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Abstract

This thesis presents concepts for system wide monitoring and performance analysis of super-

computers. They aim at detecting inefficiencies of running applications that are responsible for

suboptimal use of HPC systems.

Massive parallel applications which run inefficiently on a supercomputer will block the use of

the system and decrease the throughput of applications. The improvements in productivity of

numerical simulations are typically conducted with performance analysis tools. In order to have

an overview of all the applications that run on a supercomputer, the detection of applications

with bottlenecks requires to be conducted automatically, on-line, and with a low time overhead.

However, there is a lack of tools that provide on-line analysis without a significant overhead

and without instrumentation of user codes for the collection of data on a systemwide basis.

In order to achieve a scalable systemwide monitoring with acceptable overhead, methods and

algorithms have been developed and implemented in the PerSyst Tool. On-line analyses are

performed with codified expert knowledge on strategy maps which are designed to reveal bot-

tlenecks in an application. A strategy map is comprised of a tree-like structure whose nodes

analyze and classify the monitored data. Scalability is achieved in the PerSyst Tool with a hier-

archical distributed software architecture: a tree of agents which can operate autonomously and

run continuously to measure, analyze, filter, and collect performance data. The architecture is

designed to optimize the collection route and minimize the usage of the network interconnect.

The performance data is reduced by using two main approaches. Firstly, depending on the

resulting analysis the strategy maps determines to collect or discard performance data. Sec-

ondly, descriptive qualities of performance data are retained by using quantiles which largely

reduce the raw data. Even though, quantiles provide a scalable solution by reducing data, the

aggregations in the context of a hierarchy of agents can’t be performed with exact calculations

at all levels of the agent tree. To reduce the need for estimating quantiles, the mapping of

performance data to agents is optimized which enables the precise calculation of quantiles as

opposed to quantile estimation.

The concepts for scalable system-wide performance analysis were implemented in the PerSyst

Tool and applied to three supercomputers with a different microarchitecture. Detailed results

are provided for the Petaflop system SuperMUC, the largest of the three systems, at the Leibniz

Supercomputing Centre.
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Zusammenfassung

In der vorliegenden Arbeit wurden Konzepte für ein systemweites Monitoring mit integrierter

Leistung-Analyse für Hochleistungsrechner realisiert, um ineffizient laufende Applikationen zu

detektieren.

Ineffizient laufende massiv parallele Applikationen blockieren unnötigerweise große Teile des

Systems und reduzieren den gesamt Durchsatz an Anwendungsprogrammen. Die Produk-

tivität numerischer Simulationen lässt sich durch Leistungsanalysewerkzeuge erhöhen. Um

einen Überblick über das Leistungsverhalten aller auf einem HPC-System laufenden Anwen-

dungen zu bekommen, muss eine Überwachung und die anschließende Analyse automatisch,

online, und mit geringem Zeit-Overhead erfolgen. Allerdings fehlen bisher Werkzeuge für eine

systemweite Sammlung von Performance-Daten, in denen Online-Analysen ohne signifikanten

Overhead, und ohne Benutzercode-Instrumentierung möglich sind.

Um ein solches skalierbares systemweites Monitoring mit akzeptablen Overhead zu realisieren

wurden entsprechende Methoden und Algorithmen entwickelt und im Rahmen der vorliegenden

Arbeit ein Performance-Werkzeug namens PerSyst Tool entwickelt. Online-Analysen erfolgen

mit sogenannten Strategy-Maps, in denen Expertenwissen für die Aufdeckung von Bottlenecks

in einer Anwendung kodiert ist. Eine Strategy-Map stellt eine baumähnliche Struktur dar,

deren Knoten die Daten analysieren und klassifisieren. Die Skalierbarkeit des PerSyst-Tools

wird durch eine hierarchisch verteilte Architektur erreicht, d.h. einem Baum bestehend aus

Agenten, die autonom operieren können und dabei kontinuierlich Performance-Daten messen,

analysieren, filtern und sammeln. Die Architektur ist so aufgebaut, dass die Netzwerkbelas-

tung durch das Sammeln der Daten optimal ist. Eine Reduktion der Performance-Daten wird

mit zwei Hauptmethoden erreicht: Erstens wird mittels der Strategie-Maps entschieden, welche

Performance-Daten gesammelt oder verworfen werden können. Zweitens und entscheidender

für die Datenreduktion ist die Verwendung von Quantilen, die die qualitativen und statistis-

chen Eigenschaften der Verteilung der Performance-Daten erhalten. Die Quantil-Berechnungen

wirken sich vorteilhaft hinsichtlich der Skalierung des Tools aus, wobei bei der Aggregation ent-

lang des Agenten-Hierarchiebaums die exakte Berechnung der Quantile nicht auf allen Ebenen

des Baums möglich ist und eine Schätzmethode verwendet wird, die die statistischen Eigen-

schaften erhält. Eine optimierte Verteilung der Daten im Baum ermöglicht in den meisten

Fällen die genaue Berechnung der Quantile. Die im PerSyst-Tool implementierten Konzepte

wurden auf drei Supercomputer mit verschiedenen Microarchitekturen portiert und evaluiert.

Detaillierte Ergebnisse wurden in dieser Arbeit für das Petaflop-System SuperMUC des Leibniz-

Rechenzentrums dargestellt.

v





Contents

Acknowledgments i

Abstract v

List of Figures x

List of Tables xi

List of Listings xiii

List of Algorithms xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Performance Analysis and Design Objectives . . . . . . . . . . . . . . . . . . . . 4

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Approaches To Performance Monitoring 7

2.1 Existing Approaches and Tools for Performance Monitoring . . . . . . . . . . . . 7

2.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Execution Properties and Strategies 15

3.1 Strategies for Monitoring and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Execution Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Properties for the Westmere-EX Architecture . . . . . . . . . . . . . . . . . . . . 38

3.4 Properties for the Sandy Bridge-EP Architecture . . . . . . . . . . . . . . . . . . 51

3.5 Architecture independent Properties . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Functionality of the PerSyst Tool 69

4.1 Agent Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Agent Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Communication Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Cycles and Time Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Failure Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Statistical Aggregation of Performance Data 81

5.1 Aggregation Using Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Percentile Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Portability and Adaptability 93

6.1 Framework and Abstract Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vii



CONTENTS

7 Context of Evaluation and Results 103

7.1 Context of Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3 Scalability Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4 Results of the Transport System in SuperMUC . . . . . . . . . . . . . . . . . . . 107

7.5 Quality of Quantile Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.6 Validations of Performance Measurements . . . . . . . . . . . . . . . . . . . . . . 111

7.7 Selection of Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.8 Use cases of the PerSyst Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8 Conclusions and Outlook 133

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A Visualization 137

B Glossary 141

Bibliography 144

viii



List of Figures

1.1 Optimization roadmap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Memory bandwidth Strategy map . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Memory bound code Strategy map . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Compute bound code Strategy map . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 I/O Strategy Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Imbalance Strategy Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Other Resources Strategy Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Severity formula FORMULA1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Severity formula FORMULA2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9 Westmere-EX Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.10 Pipeline with hyperthreading technology. . . . . . . . . . . . . . . . . . . . . . . 39

3.11 Detecting load imbalance with hardware counters . . . . . . . . . . . . . . . . . . 43

3.12 Strategy for the Westmere-EX Architecture. . . . . . . . . . . . . . . . . . . . . . 50

3.13 Sandy Bridge-EP Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.14 Strategy for the Sandy Bridge-EP Architecture . . . . . . . . . . . . . . . . . . . 62

3.15 Strategy for architecture independent properties . . . . . . . . . . . . . . . . . . 68

4.1 Agent Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Approximation of a population with uniform distribution . . . . . . . . . . . . . 85

5.2 Examples of the tree distances between nodes . . . . . . . . . . . . . . . . . . . . 88

5.3 Example of retrieval of Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1 PerSyst Agent Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Tool parallelization within PerSyst Agent . . . . . . . . . . . . . . . . . . . . . . 96

7.1 Scalability for job information transmission . . . . . . . . . . . . . . . . . . . . . 106

7.2 Scalability of command transmission . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Evaluation of Quantile Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4 Validation of Flops/s in Westmere-EX. . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5 Memory Bandwidth with STREAM and the LIKWID interface. . . . . . . . . . . 114

7.6 Validation of L3 Bandwidth in Sandy Bridge-EP . . . . . . . . . . . . . . . . . . 114

7.7 Validation of instruction count using the LIKWID interface of the PerSyst Tool. 115

7.8 ATS load imbalance distribution pattern . . . . . . . . . . . . . . . . . . . . . . . 116

7.9 Validation of intra-node imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.10 Validation of inter-node imbalance property . . . . . . . . . . . . . . . . . . . . . 118

7.11 Validation of inter-node imbalance for Sandy Bridge-EP . . . . . . . . . . . . . . 118

7.12 Expensive instruction validation with the LIKWID interface . . . . . . . . . . . . 119

7.13 Validation of loads using the LIKWID interface with the PerSyst Tool . . . . . . 120

7.14 Validation of stores using the LIKWID interface with the PerSyst Tool . . . . . . 121

ix



LIST OF FIGURES

7.15 Validation of branches using the LIKWID interface with the PerSyst Tool . . . . 121

7.16 Validation of misspredicted instructions for Sandy Bridge-EP . . . . . . . . . . . 123

7.17 Validation of I/O Bytes per operation . . . . . . . . . . . . . . . . . . . . . . . . 124

7.18 Validation of I/O per open and per close operation . . . . . . . . . . . . . . . . . 125

7.19 Validation of memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.20 Application with bottleneck: Floating point operations/s . . . . . . . . . . . . . . 130

7.21 Comprehensive view of system usage . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.1 View of Average Severity for Several Jobs . . . . . . . . . . . . . . . . . . . . . . 138

A.2 View of Severity for a Single Job in a Timeline . . . . . . . . . . . . . . . . . . . 139

A.3 View of Property Value in a Timeline . . . . . . . . . . . . . . . . . . . . . . . . 140

x



List of Tables

2.1 Examples of performance tools and libraries for performance monitoring and

performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Taxonomy of performance tools and libraries according to level of monitoring . . 8

2.3 Taxonomy of tools and libraries according to instrumention . . . . . . . . . . . . 8

3.1 Westmere-EX: Cache latencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Sandy Bridge-EP: Cache latencies . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Times for cycle control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.1 Measuring tools used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Scalability of the tool in SuperMUC . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.3 Total time and number of Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.4 Times for cycle control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5 Distribution of performance data in agent tree . . . . . . . . . . . . . . . . . . . 108

7.6 Usage of the topology network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.7 Collection time in Collector Agents . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.8 Amount of collected data in SuperMUC . . . . . . . . . . . . . . . . . . . . . . . 110

7.9 Set frequency compared to measured frequency. . . . . . . . . . . . . . . . . . . . 123

7.10 Average memory bandwidth from STREAM . . . . . . . . . . . . . . . . . . . . . 127

7.11 I/O Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.12 Thresholds and how they are selected . . . . . . . . . . . . . . . . . . . . . . . . 129

7.13 Average Values per Core of Usage for the SuperMUC Processor Architectures . . 132

xi





Listings

3.1 Abstract Property Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Abstract Class Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Abstract Class Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Abstract Class HPCSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Abstract Class HPCSystemCollector . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Abstract Class HPCSystemSync . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1 Triad used for measuring flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Kernel for measuring number of instructions . . . . . . . . . . . . . . . . . . . . . 114

7.3 Assembler code for measuring the number of instructions . . . . . . . . . . . . . 115

7.4 ATS do work kernel modifications . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.5 Kernel for expensive instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.6 Assembler code for measuring number of instructions . . . . . . . . . . . . . . . . 119

7.7 Benchmark for branch misspredictions . . . . . . . . . . . . . . . . . . . . . . . . 122

xiii





List of Algorithms

1 Algorithm to distribute job’s properties to collectors. . . . . . . . . . . . . . . . . 87

2 Algorithm to distribute performance data load to several collectors. . . . . . . . . 89

3 Algorithm to find Collector with minimum load and minimum tree distance. . . . 90

xv





1
Introduction

High performance computing is an instrument for the sciences for performing numerical simu-

lations. By conducting numerical simulations in large HPC architectures, scientific results can

be obtained without the expenses of prototyping or even perform experiments which are not

possible in real life. Even though HPC systems are significantly less costly than real experimen-

tation, they still are expensive resources. Massive parallel applications which run inefficiently

on a supercomputer will block the use of the system and thus prevent it from producing more

scientific results compared to an efficient usage of the supercomputer. Optimizations of numer-

ical simulations are typically conducted with the aid of performance analysis tools. There are

more than 20 thousand application runs per month in a petaflop supercomputer 1. In order

to have an overview of the applications, the detection of applications with bottlenecks requires

to be conducted automatically and with low time overheads. However, there is a lack of tools

that provide on-line analysis without a significant overhead and without instrumentation of user

codes for a collection of data on a systemwide basis.

This thesis presents a hierarchical analysis of performance characteristics of parallel applications

to detect inefficiencies. Along with this analysis, the design characteristics, implementation, and

validation of a systemwide performance monitoring and analysis tool, hereafter PerSyst Tool,

for high performance computing systems are also described. The PerSyst Tool analyzes and

monitors at application level as well as system level with negligible overhead.

The tool has been implemented, by design, in a hierarchy of software components, called agents,

to collect and analyze monitoring information. The tree-like hierarchy ensures scalability in all

aspects of the tool, especially the scalability for measuring the data synchronously. The tool

performs analysis by including expert knowledge on performance patterns with decision trees

to determine the analysis path.

A distinct feature of the tool is that it uses information of the placement of running applica-

tions in order to perform a balancing of the monitored data in the collecting components. The

optimized distribution of the data to the components reduces significantly the communication

network usage such that the network is only used partially. This ensures that the traffic in the

network is minimized in order to avoid a congestion of the system’s network with performance

1This information was taken from the statistical data collected at the Leibniz Supercomputer Centre. See

http://www.lrz.de/services/compute/supermuc/statistics/.
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CHAPTER 1. INTRODUCTION

data.

The tool supports a time based sampling rationale. It, therefore, does not require any instrumen-

tation of code regions. The measurements are performed cyclically at equally spaced intervals.

Monitoring information at a certain point in time, just like in a snapshot, is a possibility which

can be used to monitor metrics such as instant CPU load. The collected data is always linked

to the start of the measurement, also referred to as the timestamp. The monitoring tool has

no other information of the running code except for the job that runs on the devices which are

being monitored and the timestamp.

A limitation of monitoring without instrumentation is that performance data can not be re-

lated to the source code. Thus, no detailed analysis can be made to localize and optimize the

bottleneck. The only available information are those provided by the batch scheduler.

The amount of raw performance data is reduced by applying filtering of information and ag-

gregation at the level of the job. Aggregation is performed by calculating or estimating a fixed

and defined amount of quantiles (like quartiles, deciles, or percentiles) of the observations. This

allows the tool to retain the distribution of the observations without knowledge of the available

data, while keeping the quality of the information.

The measured performance data is analyzed and classified before it is sent through the trans-

port system of agents. The analysis is done with predefined decision trees, called strategies.

The strategies are composed of performance analysis objects, or execution properties, that in-

corporate thresholds. The concept of a hierarchical analysis of performance characteristics with

strategies and properties has been adapted for systemwide monitoring and is part of the perfor-

mance analysis and autotuning tool Periscope [74]. Once an inefficiency is found, the analysis

renders into assessment on performance issues and guidelines on how to handle the detected

symptoms. Recommendations for the removal of the detected bottlenecks are not part of the

tool’s transport system but appear as a result of registered properties that are shown in the

visualization.

The experience acquired in the design, development, and deployment of such a system in three

high performance systems in user operation is presented in this document. The analysis with

strategy maps was implemented on two architecures (the first system had a simpler monitoring

and analysis of data). Detailed results are provided for the Petaflop system SuperMUC at the

Leibniz Supercomputing Centre.

1.1 Motivation

Large parallel systems which are built with general purpose processors are used mainly for

simulations in a variety of scientific fields (examples, as reported by the TOP500 organiza-

tion [85], are: meteorology, automotive, aerospace, geophysics, chemistry, finance, and research

on semiconductor). Algorithms differ widely among the fields of science which are being tested

in a supercomputer. At the Leibniz Supercomputing Centre resources of the SuperMUC sys-

tem are employed mostly for astrophysics, computational fluid dynamics, physics, life sciences,
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chemistry, geophysics, high energy and particle physics, and solid state physics. SuperMUC

is a Tier-0 system which started as the fourth fastest HPC system on the TOP500 [86] list in

2012 (with more than 3 Petaflops) and currently remains on this list among the top 12 fastest

supercomputers. It comprises 148,608 Intel Sandy Bridge-EP and 8,200 Intel Westmere-EX

cores. The HPC activities are promoted by the Bavarian Academy of Sciences and Humanities

(BAdW), the Gauss Centre for Supercomputing, GCS, and the Kompetenznetzwerk fuer Wis-

senschaftliches Hoechstleistungsrechnen in Bayern, KONWIHR. Scientists all over Europe have

access to SuperMUC via the Partnership for Advanced Supercomputing in Europe, PRACE.

High performance systems in the order of petaflops are expensive resources, so special attention

is given in maximizing the throughput of applications running on them. Inefficient applications

running on a system will decrease this throughput and can block the system from running other

applications which, in turn, hampers the users in obtaining more scientific results in a given

period of time. A general roadmap has been identified [14] that strives to increase the efficient

use of a supercomputer, the necessary steps are shown in Figure 1.1. The detection phase will

reveal the codes which are running inefficiently on a supercomputer. This phase has two steps,

the performance measurement and analysis. Once a code with performance problems has been

identified, the subsequent phase strives to obtain an optimized code (the optimization effort

phase). The analysis step can provide recommendations on how to do a detailed search or how

to perform an optimization.

Figure 1.1: Optimization roadmap for applications running on a HPC System.

Detection phase

Monitoring (performance measurement) and automatically analyzing the performance of user

codes in order to detect inefficient applications are the preliminary steps to identifying inefficien-

cies and improving the time-to-solution of codes. Although there are several tools (more than 15

tools/libraries are presented in the next chapter) that provide detailed analysis of performance

on codes, these require user involvement. The users need to know how to optimize when a tool

indicates that there is a part of the code which has bottlenecks, and they need some knowledge

on architectural specific optimizations. Additionally, many of the tools require instrumentation

which intrinsically adds time overhead which is at least proportional to the number of instru-

mented locations [9, 63, 116]. The overhead can drastically grow if the instrumentation is done

incorrectly or if the overhead affects individual threads or processes in synchronized communi-

cation [67,68] generating an incremental impact on the overall runtime. Problems may arise at

the time of instrumenting or when running an instrumented code: a change of cache behaviour;

the instrumentation interacts with the optimization of the compiler; and runtime overhead [29].
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Also, users require additional education on the handling of these tools. A preliminary detection

of inefficient codes does not require a detailed analysis like the one provided by tools which

use instrumented code regions. Given the potential disadvantages that instrumentation brings,

application instrumentation has not been considered in this thesis.

Optimization effort

A part of the next step in the roadmap of the optimization endeavour is to provide recommen-

dations, which result from the preliminary analysis. The analysis for detection suggests which

changes could be done to optimize a code. Thus, the application developers with bottlenecks

in their codes can be given recommendations of optimizations from a first diagnosis.

Detailed analysis is already provided by several tools and optimizations can be done manually or

with other automatic tuning tools, so this part of the roadmap is not covered in this dissertation.

Additional system performance information

A by-product of the gathered data is to have a systemwide overview on how an entire HPC

system is being utilized. It is important, for instance, to see the percentage of the peak per-

formance as a whole, measured through the use of the floating point operations per second, to

compare its usage with other supercomputers. This motivates a synchronized measurement of

the performance among applications and across idle nodes. The data can be used in the decision

making of procurement of new systems.

1.2 Performance Analysis and Design Objectives

The functionality of the PerSyst Tool enables the monitoring and on-line analysis of the per-

formance of all the applications running in a supercomputer. Analysis of performance data is

required to accelerate the recognition of bottlenecks and as a means for raising an alarm. The

analysis is also useful in providing recommendations as shown in the roadmap in Figure 1.1.

Once an inefficiency is detected, the possible causes can be speculated and thus recommen-

dations on how to remove the inefficiency are given. The specific objectives for performance

analysis are:

• To provide on-line analyses based on expert knowledge such that bottlenecks are revealed

and these can be related to coding practices. The codified knowledge includes the use

of monitored data, derived performance metrics, and thresholds for the evaluation of the

severity of bottlenecks.

• General recommendations are given when inefficiencies are detected. Recommendations

are not required to be the final solution to remove a bottleneck but point to possible

solutions or a course of action to further investigate the bottleneck. The recommendations

are only given when an analysis renders an inefficiency.
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• To design a hierarchy of analyses such that bottlenecks can be given a priority in order

to enable an analysis path that improves the diagnoses of the bottlenecks.

• The codified knowledge for the analysis is configurable and extensible.

• To gain insight of the macroscopic performance of the system in order to see how a

supercomputer is being used. Thus, the goal is not just to identify performance bottlenecks

in running applications but also to provide an overview of general system performance.

The following system design objectives were pursued in order to enable a suitable operation in

a supercomputer:

• Scalability of measurements: scalable and synchronized measurements across an HPC

System. The objective is to master large scale machines with potentially several hundred

thousand cores, i.e. in the petaflop range.

• Interoperability: the tool is extensible with third party tools and/or libraries in order to

profit from new technologies.

• Scalability in the tool management: management time overheads do not increase with the

number of nodes of the monitored HPC system.

• Scalability in accessing the data: the querying of the data is also scalable and performance

data should be promptly available for querying.

• Portability: The systemwide monitoring tool is ported into different HPC systems, with

different hardware architectures and independent of batch systems and/or resource man-

agers.

• Keeping a negligible monitoring intrusion: the monitoring overhead is kept statistically

insignificant in a continuously running system. The average time of an application with

or without the PerSyst Tool remains statistically the same, with a statistical error of 1%.

• Reduction of information: reduce amount of data through filtering and aggregation. Ag-

gregation of information is done with respect to cores not time. The changes of perfor-

mance with respect to time for a given application is important to identify the stages of

a running code. This information over time could be also used for another monitoring

tool that uses instrumentation which can have, as an input, the time where the bottleneck

occurs in order to later make a fine grained analysis with instrumented code.

• No required user eduction/training: the users do not require additional information or

training in the development phase or production phase of their applications for the purpose

of monitoring. No user training is required as they do not trigger the monitoring of their

applications. They are also not required to perform any changes in their applications.

Monitoring runs on the background and remains unnoticed to the application as opposed

to actively interacting with the application.
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• No additional user action: users are not required to perform extra tasks other than their

normal workflow when using the supercomputing (this usually includes: programming,

building, and running the applications). Additional user action can be a consequence of

detected performance bottlenecks, but is not directly triggered by the tool.

The concepts presented in this thesis encompass monitoring, analysis, and transport of the

data. Approaches to visualize and store the data (such as database approaches) even though

necessary, are not covered.

Security, with regard to network communication, is a broad topic with well established so-

lutions. Also, the risks associated to unauthorized access to performance data are not critical,

since the performance data remains anonymous. Finally, the possible listeners are a reduced

group, i.e. the users of a supercomputer which have special access to it. Therefore, security

considerations between communicating components within the monitoring and analysis tool are

also out of the scope of this thesis.

1.3 Structure of the Thesis

This thesis is organized in seven additional chapters. The chapter “Approaches To Performance

Monitoring” surveys the existing approaches to monitoring solutions, their areas of impact,

and how they have influenced the monitoring tool described in this thesis. The next chapter

“Execution Properties and Strategies” deals with the analysis methods in order to recognize

performance problems. Chapter “Functionality of the PerSyst Tool” describes in detail the

funcitonality and system design of the tool. In the context of agent trees, Chapter “Statistical

Aggregation of Performance Data” describes how statistical aggregation is conducted. Chapter

“Portability and Adaptability” deals with the portability and adaptability issues. Chapter

“Context of Evaluation and Results” covers the specific implementation details of the PerSyst

Tool on three supercomputers in many different aspects, including different measurements on

overhead and scalability. There is also a validation of the results of the tool. The results on

monitoring applications are shown in this chapter. Finally, the “Conclusions and Discussions”

chapter includes the interpretation of the overall results and conclusions.
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2
Approaches To Performance Monitoring

The following section provides a classification of the approaches to performance monitoring.

Additionally, the overlapping areas that the monitoring tool in this dissertation has with other

tools are described. The taxonomy tables also help determine the relevant differences the tool

has with respect to other performance tools. Classifications are shown according to: the level at

which it applies, functional approaches, and according to the software architecture. Section 2.2

presents the tools which have overlapping areas of commonality with the PerSyst Tool.

2.1 Existing Approaches and Tools for Performance Monitoring

Performance monitoring tools register and process performance data in order to help detect

bottlenecks or to help a developer to optimize a code. There are performance tools which

are prominent given that they have steps into analysis of performance data and they do not

perform just performance monitoring. A non-exhaustive list of tools and libraries (only few

representative tools at each category are shown) which are dedicated to performance monitoring

(measuring based on profiling, or tracing) are shown on Table 2.1.

Performance Monitoring Performance Monitoring

and Analysis

Ganglia [7], PAPI [79] Periscope [38], Scalasca [66],

pfmon [3], perf [26] TAU [105], Vampir [62]

Table 2.1: Examples of performance tools and libraries for performance monitoring and performance

analysis

The tools and libraries for performance monitoring are either dedicated to: the performance

analysis of a single application (application level); the collection of performance data for a

system-wide overview for system administrators (system level); or a combination of the two.

Direct measurement can be done without knowledge of the source code (there is no instru-

mentation involved) at system and application level. Once an application is instrumented, the

monitoring is done at application level. Examples of other tools in the different monitoring

levels are shown in Table 2.2.
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Measurement Level Example of tools

Application level PAPI [79], Likwid [113]

Application level and system level
TAUoverSuperMON [81], NW-

Perf [77]

System level Ganglia [7], TAUoverSuper-

MON [81]

Table 2.2: Taxonomy of performance tools and libraries according to level of monitoring

Performance monitoring of an application can be categorized into monitoring with instru-

mentation and without it. There are different instrumentation approaches that have been

identified [29]. Instrumentation can be applied in the source code by inserting function calls

that trigger the measurement and/or trace information collection prior to compilation [119].

Library level instrumentation links the library calls to a wrapper library with added function-

ality for monitoring. This approach can be automatic and unnoticed by the user if the wrapper

libraries replace the desired library but links internally to the library. Binary instrumentation

rewrites the binary by inserting binary code that collects the measurements [13]. The advantage

of this method is that instrumentation is language independent and no recompilation is needed.

Finally, dynamic instrumentation refers to the approach of inserting and removing instrumen-

tation at runtime [9], clearly no recompilation is needed and the approach is also language

independent. Table 2.3 shows the type of instrumentations with examples.

Source level Periscope [38], Scalasca [66] , TAU [105],

Vampir [62], Likwid [113]

Library level IPM [35,36]

Binary level ATOM [31]

Dynamic at runtime Pin [90], DynInst [9],

DynaProf [78], DPCL [91]

No instrumentation Likwid, perf [26], pfmon [3]

Table 2.3: Taxonomy of tools and libraries according to instrumention

From the forgoing three taxonomy tables presented, there is no tool or library which pro-

vides performance analysis without instrumentation at a system level with a synchronized mea-

surement for large HPC architectures. The PerSyst Tool encompasses all these features and

additionally enables the aggregation and reduction of performance data and optimizes the ex-

traction/collection of performance data. These capabilities are desired due to:

• No instrumentation implies negligible impact or disturbance of running applications.

• Systemwide on-line performance analysis of application level to process the bulk of appli-

cation runs in a large HPC system.
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• Synchronized measurement allows for performance monitoring at system level. For exam-

ple: systemwide collection of floating point operations, instructions, and other metrics.

• Selection and aggregation of data to handle a reduced amount of data without sacrificing

the quality of the monitoring data.

2.2 State of the art

The previous section described tools which are only a fraction of the existent tools for perfor-

mance measurements. This section will cover the tools which are in a direct relation to the

PerSyst Tool in more detail, showing the differences to each tool.

Direct measurement tools

At the Leibniz Supercomputing Centre, tools like pfmon [3] from HP were called at regular

intervals and its output is parsed, aggregated, and stored in the file system. The used approach

measures the hardware events by using command line tools at the compute nodes which output

their data to file systems [16]. These buffered files are then read by another component which

stores them into a database. Subsequently, this component deletes the files. All of these pro-

cedures are carried out at regular intervals. The approach is implemented in two main steps:

a script invokes the measuring tool and produces files in a common file system; then a script

parses the output files and stores it into a database. A chronological scheduler was set to cycli-

cally run the previous steps.

Differences or addressed shortcomings: This approach has the downside of having a costly

I/O file system accesses which impedes the method to be scaled for machines with over hun-

dreds of thousands of cores; it does not reduce the amount of information and does not provide

analysis.

LIKWID

The LIKWID tool [112, 113] is multifaceted and one of its uses is for performance monitoring

at system level. LIKWID is based on using the linux kernel module Model-Specific Registers

(MSR) which can be found on Intel and AMD processors. A light weight daemon runs on the

compute nodes and accepts Unix socket connections as a command to write on the MSR virtual

files to read hardware events. The daemon makes probes at a specified cycle time and delivers

these raw counters to the requesting client.

The tool can also be used without the daemon to run independently for a specific code as a

performance tool. In this case, however, the tool requires special permissions to run. A given

application can be instrumented to interact with LIKWID and do specific measurements for

regions of the code. LIKWID uses predefined performance groups to select a group of events to

be measured. These events are not presented raw to the users, instead derived metrics (rates,

ratios and/or other calculations) are made available.

Differences or addressed shortcomings: Although LIKWID has been used as a library
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on the PerSyst Tool, its software infrastructure is not adequate to be used as a stand alone

monitoring system for automatic analysis and reduction of information. The client components

are not designed on a hierarchical structure such that the tool scales to a large number of nodes.

NWPerf

NWPerf does systemwide monitoring on large scale supercomputing clusters at application

level [77]. The scalability has not been experimentally tested, but given that it is based on a

hierarchical system, the extension and scaling the system is possible. NWPerf measures data

via modules at intervals synchronized by the Network Time Protocol (NTP) of a cluster. These

modules operate as clients to send performance data over a multicast socket to a packet-handler

component. The packet-handler uses a lightweight shared memory queue, which is emptied at

intervals by a queue drainer. Data is decoded by the latter component and inserted to a database

for permanent storage.

Differences or addressed shortcomings: Monitoring is done without applying on-line anal-

ysis, and has no mechanisms for filtering, reducing, or aggregating the information.

MRNet

The Multicast Reduction Network tool (MRNet) is a tool for parallel applications enabling

high-throughput communications [17, 55, 93]. Although MRNet is not, per se, a performance

measuring tool it can be used for these purposes. Other ways in which MRNet can be cus-

tomized include debugging, system administration tools, operations of command and control,

and data collection and reduction. MRNet uses the principle of a hierarchy of software in a tree

topology, also referred to as a tree-based overlay network, for scaling to hundreds of thousands

of cores. Multicast is done from the frontend downwards through the tree, until the command

reaches the leaves of the tree-topology. Transport of data is done with a bottom-up logic, i.e.

from the leaves of the tree to the frontend. Aggregation can be implemented by customisable

filters to aggregate data packets. The filters, however, can aggregate data only from piece-wise

continuous aggregation functions.

Differences or addressed shortcomings: When MRNet is used as a performance monitor-

ing tool the collection of data is done by using the entire tree topology without optimizing the

extraction of data. The purpose of the tool is very broad and does not specialize on performance

monitoring.

TAU

A combination of systemwide monitoring and application level monitoring has been developed

by Nataraj et al [81]. The authors used SuperMon [75], a monitoring and transportation sys-

tem, to extract data from the compute nodes. The compute nodes delivered the data from mon

(a single node data server) and also TAU [106] to provide application and system performance

correlation. TAU provides the information of instrumented application. The tested scalability

of Supermon is up to 2048 [108] nodes. Supermon handles client requests to extract performance

information from the kernel instead of using a cyclic system-wide measurement rationale. TAU
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can be used with other tools, for instance TAU over MRNet [65, 80], to meet the requirements

of scalability.

Differences or addressed shortcomings: TAU relies on instrumentation of applications,

which may bring unwanted side effects, like the ones discussed in the introductory chapter.

IPM

The Integrated Performance Monitor tool (IPM) is a scalable, portable, and low overhead profil-

ing and tracing tool for application performance monitoring [36,107]. Among other performance

measurements, IPM profiles several types of MPI calls. Based on an overloading of the Intelli-

gent Platform Management Interface(IPMI), IPM can be used to application level monitoring

with instrumentation. The instrumentation is done automatically, without the user having to

activate it, as it is at a library level. All running applications are profiled with a low overhead.

As the applications interact with the MPI library, the library registers the number of calls with

IPM. Among other features, IPM uses a hashing mechanism, which codes program regions into

a signature, and compresses them to represent more than one task and region, in order to lower

its overhead. Due to the fact that results across applications are not available, there is not a

possibility of having a systemwide overview of performance. IPM also does not have on-line

analysis; the applications can be analysed on a post-mortem visualization.

Differences or addressed shortcomings: IPM relies on instrumentation of applications,

which may bring unwanted side effects, like the ones discussed in the introductory chapter.

Ganglia

The open source project Ganglia enables distributed and systemwide monitoring for high-

performance computing systems [7, 69]. Ganglia is widely used for system administration pur-

poses and is considered to have a highly optimized means of data collection. Using a UDP

communication protocol, Ganglia components transmit monitoring data in a unicast or multi-

cast channel. Ganglia aims to achieve low per-node overheads and high concurrency [95], in

part by using the UDP communication protocol. Per default, the gmond component of Ganglia

is configured to send basic metrics such as system load and cpu utilization. User defined metrics

contained in key-value pairs can easily be extended by means of added C or Python modules.

The gmond component is also used as middle-ware to aggregate data and receive from other

gmond daemons. Thus, it keeps an in-memory cache of monitored data. The gmetad component

is a daemon which polls the gmond components periodically in order to store the information.

The latter components are grouped in a hierarchical tree structure to enable high scalability.

The default storage engine used is the Round Robin Database tool (RRD Tool) [84] which

can be easily used for real-time visualization. Ganglia includes a web frontend component for

visualization of performance information.

Differences or addressed shortcomings: Uses UDP, an unreliable communication proto-

col, and has no in-built capabilities for on-line analysis. The transport system even though

optimized by using UDP, is not optimized by reducing the communication paths. Although

highly scalable, Ganglia has no inbuilt capabilities of monitoring in a per job basis. In addition
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the collection of data among compute nodes is not synchronised, such that it is not possible to

correlate data.

The Parastation GridMonitor

The Parastation GridMonitor provides data collection at a desired request from a client [21].

As a commercial software, the GridMonitor’s technology remains partially unknown. As such,

it is not available to be adapted to a systemwide monitoring system that provides analysis and

reduction of information. The Grid Monitor uses several components with different function-

alities in order collect performance data [22]. One of these components, the collector, is the

central process which captures data from the different agents which are running on the nodes.

The collector, however, will only request information when a client triggers this request. The

structure of data which is passed from an agent to a collector is a key, a value, and a timestamp.

Differences or addressed shortcomings: Monitoring is done without applying on-line anal-

ysis. Its technology remains partially unknown as is not open source.

The HOPSA Project

In the HOPSA Project [76] several tools have been integrated in a detection and analysis pro-

cess for application performance monitoring. The tools carry out either systemwide performance

analysis or application performance monitoring in separate stages. The system monitoring con-

tributes with performance information for a holistic view and complements the use of application

monitoring and analysis tools. The system monitoring on certain devices may not reflect the

effects of one application, but of several applications. The use of application monitoring and

analysis tools is constrained in the HOPSA Project to a set of well-known performance tools

which cover different areas of performance bottlenecks (Dimemas [103], Paraver [64], Scalasca,

ThreadSpotter [12] and Vampir).

Differences or addressed shortcomings: The approach presented by the HOPSA Project

is different to the PerSyst Tool. While the PerSyst Tool combines systemwide monitoring and

uses analysis for a preliminary detection of inefficient codes, the HOPSA Project has a workflow

oriented to a detailed analysis which has an additional systemwide information support.

Periscope

Many of the features that are desirable for systemwide performance monitoring are already

existent in the profiling based tool Periscope [38]. Periscope is a scalable tool for analyzing ap-

plication performance. It enables a distributed on-line search for performance properties based

on hardware counters as well as MPI and OpenMP properties [11, 39–41]. Using instrumented

code, Periscope provides the possibility of defining a user region within the code [41]. There

are also potential look-up regions within the instrumented section of the code which are auto-

matically detected. These regions are analyzed and refined when bottlenecks are detected in

order to delimit the section of the code which has a problem. Periscope binds the application

with a monitoring request interface which activates the start and stop of measurements of the

hardware counters at these regions [61].
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In Periscope, the detection of the bottlenecks is done through the evaluation of properties in

analysis strategies. The properties characterize the bottlenecks and are arranged into trees that

are refined when a given bottleneck is encountered. These ideas have been used in the PerSyst

Tool with some modifications—they have been adjusted to characterize the systemwide moni-

toring and applications as a black box.

Differences or addressed shortcomings: A tool like Persicope, while it can be effective in

precisely uncovering inefficiencies, it is not adequate for the purpose of system wide analysis and

monitoring. Periscope provides detailed analysis and is not a system wide monitoring tool itself

(it does not have the capability of running as a daemon, thus providing continuous monitoring).

The PerSyst Tool is distinct in that it provides formalized on-line analysis without instru-

mentation, filtering unnecessary monitoring data and aggregating the monitored data using

percentiles [42, 43]. The approach is to conduct a preliminary detection of inefficient codes

(which may even be running in production mode as opposed to testing or scaling trials). Ad-

ditionally, the hierarchical network is only used partially to communicate the monitoring data

from the jobs and produce an output as local to the source of information as possible, in this

way it avoids network congestion. It does not belong to the set of tools that use instrumentation

to correlate data with code regions. The tool uses current technology to cope with scalability

and demands to handle the volumes of data produced. Scalability issues are tackled by the hi-

erarchical tree-like architecture of independent and communicating software components. The

PerSyst Tool handles conflict monitoring by allowing users to switch off the monitoring infras-

tructure. Finally, adapting the PerSyst Tool to other tools with system level data, in order to

be part of a holistic approach of data collection, is feasible [45].
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3
Execution Properties and Strategies

In this Chapter, the analysis abstractions—the execution properties and strategies—used in the

PerSyst Tool are provided.

An analysis done to one or more hardware events that aims to reveal an inefficiency is referred

to as execution properties or simply properties. These abstractions are used in the tool’s al-

gorithms to evaluate performance. The properties are organized in tree-like structures that

determines whether to continue performing a finer analysis or to ignore monitoring data when

no bottleneck is detected. These analysis trees are called strategies in this thesis and are used

to evaluate the performance in a code. The idea behind a tree structure of properties is to

start at the root properties and refine to other properties to search for an inefficiency. Once

an inefficiency has been identified at a root property, a more specific inspection will be made

with the child properties to delimit the problem which causes it. This idea was taken from

Periscope [38] which also refines properties depending on the implemented strategies only when

it is needed.

A strategy map is an abstraction of analysis which includes the strategy along with recommenda-

tions (the latter are a product of the analyses performed). Strategy maps are introduced in the

following section. The bottleneck list proposed by Treibig et al. [114] is extended in this section

and used for the properties and strategies. The criterion used by the chip vendors [1,2,4,52] to

optimize a code has also been taken into account. The criteria used to prioritize the analysis of

performance bottlenecks are:

• Limitations inherent to the code: algorithmic constraints, volume of data saturates the

internal bandwidth, dominating I/O, etc.

• Optimizations that have the biggest impact on performance: optimizing load imbalance

in comparison to optimizing loop-unrolling, optimizing memory accesses compared to

optimizing branch prediction, and so on.

• Bottlenecks that typically arise more frequently.

These criteria are applied with the constraint that these performance bottlenecks should be

measurable with current measurement tools and applicable for black box monitoring1. The

1The term black box monitoring will be used in this document to refer to monitoring of running executables

without knowing the source code which is being run.
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possible bottlenecks and optimizations can be formalized into a systematic analysis of code,

having the code as a black box.

Section 3.2 provides a detailed definition and explanation of how properties have been im-

plemented. The analyses are centered on the x86 64 Intel architectures: Westmere-EX, and

Sandy Bridge-EP. For each architecture the final strategies are provided which may differ from

the strategy maps due to events which can’t be measured with current available tools.

3.1 Strategies for Monitoring and Analysis

A strategy allows a controlled selection of properties by defining relations among them. A

parent-child relation in a property defines a broader problem in the parent property and a more

delimited problem in the child property, such that a more detailed diagnosis to an observed

performance problem can be done in the latter. For example: the property for stalled cycles

is a parent to stalled cycles due to instruction starvation. A strategy may comprise a simple

list of properties or a more complex list of trees of properties. All of the strategy nodes in a

tree are properties that analyze a specific bottleneck. Cyclic property structures, for instance

property A is parent of property B and viceversa, are, by definition, not possible given that

this would contradict the idea of doing a refinement in a child property. A strategy has one

or more root properties which will always be evaluated, if the measurement data for them is

available. If a root property has one or more child properties, these will be evaluated if the

root property reports the existence of a bottleneck. Refining over properties or stopping and

ignoring a sub-strategy tree is controlled in the same way.

In the following sections strategy maps are shown. The term ’high’ and ’low’, when used in

the context of a property and a strategy map, is precisely defined by a threshold. A threshold

is a quantity which delimits what is considered to be an inefficiency (An explanation on how

thresholds values can be selected is available in Section 3.2). Each figure illustrates a strategy

map. Note that the section numbering has a correspondence to the items shown in the figures.

In the strategy maps the boxes can correspond to a property or to an analysis done at the end

of the application run (post-mortem stage). When the word ’Strategy:’ appears in the title

of a section, the section corresponds to a strategy map in a figure and marks the beginning of

a block of sections which are related to this figure. The arrows in a strategy map represent

selections: when no qualifier (such as ’high’ and ’low’) is indicated the branch should always be

evaluated. Each strategy map branches to several analyses that have to be parsed in order to

identify the bottleneck. While red boxes correspond to recommendations, green circles indicate

that no optimization is required for the examined performance pattern.
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3.1.1 Strategy: Memory bandwidth analysis

The most dominant aspect of single core performance is related to memory movements in the

processor and, thus, it is important to classify a code with an input data set as memory bound

or compute bound [114]. Memory boundedness limits the optimizations that can be applied at

the level of the pipeline. Regardless of additional stalls that the pipeline may suffer, the memory

accesses will dominate the latency since they are many times more expensive and will thus hide

latencies due to other stalled cycles. A memory transfer has an average latency of 50 to 70

compute cycles (see Tables 3.1 and 3.2 of the two presented architectures in the Sections 3.3

and 3.4). These are average values and not a precise cost in terms of cycles, given that software

prefetching and memory affinity in NUMA architectures mitigate the waiting cycles for memory

in the DRAM [88]. On the other hand, the opposite effect appears (longer latency) if data in

the L1 and L2 caches has to be written on main memory.

The strategy starts by analyzing the memory bandwidth; at this point it is determined whether

there is memory saturation or not. Figure 3.1 illustrates the memory bandwidth map.

IF memory bandwidth is high:

GO TO Section 3.1.2

ELSE GO TO Section 3.1.9

Figure 3.1: Memory bandwidth strategy map

3.1.2 Analysis: Memory bound

If an application is memory bound, the usage of data from the DRAM requires inspection. If

the loaded data volume into the cache and registers is not entirely used for the computations,

then the unused data volume should be avoided. If the same data is loaded several times to

carry out computations, a recommendation is to improve the data locality such that the data is

loaded once and all the necessary computations are carried in one go before other data is loaded

for computations. If the code is already optimized for moving data blocks to a minimal amount

without performing strided accesses, and it is still memory bound, then there is little work to

do by optimizing the computations themselves, since the compute latencies will be hidden by

the memory transfer latencies.

Figure 3.2 presents the strategy map for the analysis of memory bound code. Trying to detect
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strided access or inefficient temporal locality can not be determined separately. However, by

examining the metrics shown in Figure 3.2, it can be determined that it has at least one of

the two problems, without a distinction if it is a strided access problem or a memory locality

problem.

Figure 3.2: Memory bound code strategy map

3.1.3 Analysis: Loads to L3 misses ratio

A diagnosis to determine whether the code suffers from strided accesses or memory locality can

be done by examining the ratio of data loads by L3 cache misses. If loads are constantly causing

cache misses, this ratio will be low and this indicates a bad data locality.

IF loads to L3 misses ratio is low :

GO TO Section 3.1.6

ELSE code needs no optimization with respect to this ratio.

3.1.4 Analysis: Loads to stores ratio

The ratio of the loads to the stores gives an idea of the amount of data needed (loaded) in

order to produce new data (stored). The lower this ratio, the more efficiently the new data is

produced. A high ratio is not necessarily a bottleneck but it does give an idea of how the data

volume is being used.

IF loads to stores ratio is high:

GO TO Section 3.1.6

ELSE code needs no optimization with respect to this ratio.
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3.1.5 Analysis: Inter-socket bandwidth

Certain Intel architectures feature two or more sockets with shared memory, with each socket

containing several cores. The inter-socket bandwidth can be monitored to examine the data

locality. In the case of certain Intel architecture types, the transfer rate through the Quick Path

Interconnect, QPI, can be used for this purpose. High transfer rates are an indication that data

used in one hardware socket has to be fetched in another one (for example, there is bad data

locality due to the first touch policy). If there is a high bandwidth between sockets, i.e. the

NUMA bandwidth, it is recommended that the data placement be checked.

IF inter-socket bandwidth is high:

GO TO Section 3.1.6

ELSE code needs no optimization with respect to inter-socket bandwidth.

3.1.6 Recommendation: Check for data locality

This recommendation aims to improve the data locality. It should be checked whether the data

volume is not being used due to:

• Strided accesses: if this is the case improve data spatial locality.

• Inefficient temporal data locality: if this is the case try to improve the reutilization of

data

• Check first touch policy in OpenMP threads: make sure that data is initialized at the

threads were it will be used.

3.1.7 Analysis: Single to double precision ratio

The type of floating point precision that has been used can be analyzed via the ratio of single

to double precision. Using single precision instead of double precision halves the memory con-

sumption of the floating point data and the corresponding data transfers.

IF single to double precision ratio is low :

GO TO Section 3.1.8

ELSE code needs no optimization with respect to this ratio.

3.1.8 Recommendation: Use single precision

This recommendation consists of reducing the memory footprint of the application. If the code

does not suffer from numerical instability with single precision, then single precision should be

used as the code will not only perform better, but it will also take up less memory and perform

less data movements in terms of bytes. For memory bound codes this can be very beneficial if

the application can become compute bound. Therefore, recommendations to a code which uses

double precision include analyzing the feasibility of using single precision.
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3.1.9 Strategy: Compute bound analysis

If a code is compute bound, the code should also address latencies in moving data that may bring

the computation temporarily to a stall. However, these are not necessarily the dominant cause

of bad performance. Figure 3.3 shows the different aspects of performance that are explored in

a compute bound code.

3.1.10 Analysis: Floating point operation rate

The rate of floating point operations has been endorsed by the scientific computing community

as part of the standard set of metrics for performance evaluation. The higher the rate the

more efficient the code is considered (an exception is when phoney arithmetic calculations are

included in the code just to increase this rate).

IF floating point operation rate is low :

GO TO Section 3.1.11 THEN Section 3.1.16

ELSE code needs no optimization with respect to the flop rate.

3.1.11 Analysis: Ratio of vector to scalar operations

Codes with data level parallelism can be vectorized with special instructions that are available in

some architectures. Intel provides, for instance, instruction sets with SSE or AVX vectorizations

(or both). These instruction sets allow the architecture to perform several operations at once.

The higher the ratio of the total number of vectorized operations (with either AVX and/or SSE)

to the number of scalar operations, the more efficient the code will execute. Vector instructions

can perform (depending on the architecture and if they are in single precision) between 2 to 16

times the number of operations compared to scalar operations. Thus, an equivalent speedup

can be achieved by using these vectorized operations.

IF vector to scalar operations ratio is low :

GO TO Section 3.1.12

ELSE GO TO Section 3.1.13.

3.1.12 Recommendation: Check data level parallelism

The recommendation when a code has little or no vectorized operations, is to try to remove the

dependencies in the loop kernel. If the code exhibits data level parallelism then the recommen-

dation is to compile the code with AVX compilation flag.

3.1.13 Analysis: AVX to SSE ratio

The ratio of the different types of vectorizations can also be measured. The ratio of AVX

instructions and SSE instructions is inspected, if the architecture supports AVX instructions.

In this item, scalar operations are not taken into account.

IF AVX to SSE ratio is low :
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Figure 3.3: Compute bound code Strategy map
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GO TO Section 3.1.14

ELSE GO TO Section 3.1.15.

3.1.14 Recommendation: Compile with the AVX flag

A code that has been compiled with SSE instructions has a degree of data level parallelism

present. The question is then whether this data level parallelism can be incremented, or whether

it is enough to leverage the AVX instructions by simply compiling with the AVX flag (this is

the case where flags were simply not used before).

3.1.15 Recommendation: In-depth analysis

If all the analysis failed to give a recommendation, the application developer should instrument

the code for a in-depth analysis of performance and code regions. The developer can check for

other causes of inefficient performance.

3.1.16 Analysis: Single to double precision ratio

Section 3.1.7 analyzes single precision to double precision of floating point operations to de-

termine whether the memory can be reduced in the case of memory bound code. In some

architectures two single precision floating point operations can be performed in the place of one

double precision operation, which makes the former more efficient. Thus, the analysis of single

precision usage is also needed to improve the performance in compute bound codes.

IF single to double precision ratio is low :

GO TO Section 3.1.17

ELSE GO TO Section 3.1.15.

3.1.17 Recommendation: Use single precision

As a recommendation, the application developer should evaluate if the use of single precision is

possible. A speed-up of almost a factor of 2 is possible if there are no dependencies.

3.1.18 Analysis: Branch missprediction to instructions ratio

By monitoring the branch missprediction rate to the instructions, wasted CPU cycles due to

misspredictions can be detected. The waste of cycles implies not only wasted time but energy,

as the execution of misspredicted instructions make the processor work harder.

IF branch miss prediction is high:

GO TO Section 3.1.19

ELSE code needs no optimization with respect to misspredicted branches.

3.1.19 Analysis: Branch missprediction to branches ratio

The rate of branch miss predictions with respect to total number of branches will guide the

optimization actions. This analysis is done to obtain more insight of the performance with
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respect to branches. Thus, only a recommendation will follow.

GO TO Section 3.1.20

3.1.20 Recommendation: Measures against branch misspredictions

The recommendation given is find the conditionals where it is known that jumps (branches)

are being performed and analyze the possibility of removing or reordering the conditionals. By

removing branches, the misspredictions will subsequently be removed [60]. The developer can

allow the branch predictor to correctly predict branches when these unnecessary branches are

removed. It is also recommended to try different compiler optimizations.

3.1.21 Analysis: Rate of expensive instructions

Another item to analyze is whether a code has expensive instructions (like divisions, exponen-

tials, square roots, etc), to be found within the compute kernel.

IF expensive instruction rate is high:

GO TO Section 3.1.22

ELSE code needs no optimization with respect to expensive instructions.

3.1.22 Recommendation: Remove expensive instructions

The application developer should avoid using expensive instructions within the loop kernel. The

recommendation is to reduce associated latencies by checking the expensive instructions in the

kernel. The following optimizations can be done:

• If there is a division, the recommendation is to find the reciprocal of the fraction and

use multiplication (i.e. change a fraction which is known to its decimal form). The Intel

compiler flag -no-prec-div gives a hint to the compiler to replace the division by a

multiplication with a reciprocal.

• For other expensive operations, it is recommended to try to do the expensive operation

outside the kernel (outside of other loops as well).

• If the previous optimizations are not possible, then the application developer should con-

sider implementing a look-up table with the correspondence of a value to the transforma-

tion of an expensive function that is computed only once and accessed within the kernel

loop, avoiding thus the repetitive expensive instruction. There will be a trade off between

wasted cycles due to expensive instructions and memory accesses (look up table), so this

solution requires careful evaluation.
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3.1.23 Analysis: CPI and Flop rate

Another item to examine is the ratio of cpi (clock cycles divided by instructions) and the

flop rate. This analysis targets applications which should typically be floating point intensive.

The phenomenon of having a low ratio of clocks per instruction and, simultaneously, a low

floating point operation rate, could indicate that the code performs unwanted operations [114].

Incorrect inlining will also produce this effect, when inlined functions which aren’t visible to the

application developer insert other inlined functions unknowingly. These usually happens when

inlining constructors which initialize other classes and/or inherit from other classes.

IF CPI is high:

GO TO Section 3.1.15

ELSE IF CPI is low AND flop rate is low :

GO TO Section 3.1.24

ELSE code needs no optimizations.

3.1.24 Recommendation: Check object instantiation

A typical bottleneck which exhibits the symptom of low CPI and low floating point rate is the

excessive object instantiation in C++ [114]. Object instantiation in object oriented languages

(like C++) creates more latency with unnecessary instructions than normal in-built types.

These are usually hidden functions that are not explicitly written by the developer and must be

included in the compiled code [72].Therefore, the recommendation is to analyze the possibility of

using less objects (C struct in the case of C++) and, thus, to remove unnecessary instructions.

3.1.25 Analysis: L3 bandwidth

This analysis aims to determine whether a code is bound by the L3 cache accesses.

IF L3 bandwidth is high:

GO TO Section 3.1.15

ELSE code needs no optimizations with respect to L3 bandwidth.

3.1.26 Analysis: L3 cache misses to instructions ratio

If the L3 cache misses to instructions ratio is high compared to the total number of retired

instructions, this indicates that the L3 cache misses dominate.

IF L3 cache misses to instructions ratio is high:

GO TO Section 3.1.27

ELSE code needs no optimizations with respect to L3 accesses.

3.1.27 Analysis: L3 cache hits to L3 cache misses ratio

If L3 cache misses are high with respect to the total number of instructions, the fraction of L3

cache hits to L3 cache misses will bring more insight into the cache utilization. Note that the

recommendations given to this symptom are the same as the ones in Section 3.1.6.
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IF L3 cache hits to misses ratio is low :

GO TO Section 3.1.6

ELSE GO TO Section 3.1.15.

3.1.28 Analysis: Stall cycles rate

The last issue to be analyzed for a compute bound code is to evaluate whether there is a high

rate of pipeline and register stalls. Ideally, the processor’s pipeline is filled with instructions to

process. Bubbles (also known as nops, or no operations) inside the pipeline do not contribute

to the processing of a code, they are wasted resources. Cycles which stall are filled with these

bubbles and, thus, the rate of stalling can be taken as a measure of inefficiency. A high rate of

stalls indicates that the pipeline is used inefficiently.

IF stalls cycles rate is high:

GO TO Section 3.1.29

ELSE code needs no optimizations.

3.1.29 Recommendation: Detailed analysis or consider SMT

This recommendation is to perform a more in depth analysis with an instrumented code and

more hardware events per code region to detect the problem. A recommendation when the

exact cause of the bottleneck in the code can not be determined is to use the hyperthreading

technology in the modern Intel architectures. Hyperthreading technology is also known as Si-

multaneous Multi-Threading (SMT). It increases the throughput by allowing the pipeline to be

fed from two separate sets of hardware registers. A code with many bubbles in the registers

and in the pipeline will benefit by sharing these unused resources between two logical threads.

3.1.30 Strategy: I/O analysis

Other aspects of interest to analyze in an application include their I/O operations. The strategy

map defined for this purpose is shown in Figure 3.4. This strategy is independent from the single

core analysis and the memory bandwidth strategy maps previously explained. There are several

metrics which give insight into the use of I/O. Disk I/O is extremely expensive and many times

slower compared to computation cycles, at least 10,000 times more according to [27]. Even if

I/O operations remain unavoidable, the forms of accessing a file system can be optimized in

diverse ways.

3.1.31 Analysis: I/O imbalance

A parallel application with tens of thousands of cores or more can perform I/O from only one

process. This first approach of performing I/O will cause a serious bottleneck in this particular

process. Receiving (or sending) all the data from (or to) the rest of the processes produces the

first bottleneck. Moving the bulk together to a parallel file system is another bottleneck. A
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Figure 3.4: I/O Strategy Map

second approach is to perform I/O from each process. However, this may cause a bottleneck in

the file system itself when receiving all of these requests, especially if all processes are opening

different files (due to meta-data issues). A third approach is a hybrid form using the previous

two variants, i.e. to perform I/O from some of the processes. The processes which perform

I/O are called I/O master processes and these receive and send the data to their group of

processes. Finding the best ratio of I/O master processes to the other processes will depend

on several factors, like the amount of I/O written by the application, and the file system used

and its configuration. The hybrid variant defines a number of processes in a group, and the

entire requested cores are divided into groups. All the members of one group move the data,

in a first step, to a designated process within this group and this process performs, in a second

step, the I/O operations. The fastest communication for the first step is at the level of a shared

memory instance, or a node, where no network communication is needed, only internal socket

communication at most.

I/O imbalance refers to an unequal amount of requests and/or request sizes (I/O work) among

I/O master processes which results in uneven time spent when performing I/O. Another form

of I/O imbalance is when the ratio of I/O master processes to all the processes is suboptimal

(the best example for this is the case where one process performs all of the I/O in a parallel

application). In this case, the distribution of I/O work is done sub-optimally even if the I/O

master processes perform an equal amount of requests and request sizes. Data gathering and

scattering to and from I/O performing processes also causes a bottleneck and an ineffective

parallel access to the file system is a result of inappropriate distribution of the I/O work.

Under the assumption that the ratio of I/O master processes is optimal, and not all processes

are I/O master processes, processes which are exempt from performing I/O operations cannot
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be considered imbalanced with respect to the processes which do.

I/O imbalance can also be caused by the file system, if two independent I/O requests of similar

size take considerably different times for completion. In this case, the I/O imbalance is due to

the unpredictability of the execution time of an I/O request, hindering the application developer

and the runtime environment from properly balancing the I/O requests among the I/O master

processes.

IF I/O operations are imbalanced:

GO TO Section 3.1.32

ELSE code needs no optimizations with respect to I/O imbalance.

3.1.32 Recommendation: Revise the I/O paradigm

Given the exceptions when considering I/O imbalance (file system conditions, optimal I/O

master processes ratio, etc.), it is not straight forward to detect I/O imbalance with black box

monitoring; or at least not for all of the different cases. However, the following recommendations

can be given:

• Try to evenly distribute the I/O work among the I/O master processes to achieve potential

speedups.

• Try to apply dynamic load balancing. Dynamic I/O load balancing has proven to be an

effective technique to achieve better I/O performance [89].

3.1.33 Analysis: I/O bandwidth

I/O bandwidth gives an insight into the volume requested to the system. If the bandwidth is

small this might indicate an inefficiency of the application due to small sized I/O requests. It

could also be due to the load on the file system from other applications.

IF rate of I/O bandwidth is high:

GO TO Section 3.1.34

ELSE GO TO Section 3.1.35.

3.1.34 Recommendation: In-depth analysis for I/O

The recommendation is to perform in-depth I/O analysis with instrumentation (For example

with Darshan [20]). This recommendation also includes a revision to the parallel paradigm.

The objective is to try to reduce the amount of I/O.

3.1.35 Analysis: I/O requests size

Relatively frequent but small I/O requests is an indication of suboptimal use; the best approach

is to try to bundle the I/O data to make larger I/O requests.

IF rate of I/O with small bandwidth is high:

GO TO Section 3.1.36

ELSE code needs no optimizations with respect to I/O request sizes.
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3.1.36 Recommendation: Consolidate I/O requests

Optimizations to consolidate I/O requests include: bundling I/O requests into fewer but larger

requests (applied in the Two-Phase optimization provided by the MPI-IO ROMIO standard [110]);

data sieving techniques (also from the MPI-IO ROMIO); correcting I/O imbalance; using un-

formatted I/O; using compression; and using non-blocking (asynchronous) I/O.

3.1.37 Analysis: File metadata request rate

File metadata is requested when a file is opened. Sending this metadata to the requesting

process has an associated time overhead. I/O operations can be performed to and from a single

shared file. In this case the processes know where to access the files by using their calculated

offset.

IF rate of I/O with small bandwidth is high:

GO TO Section 3.1.38

ELSE code needs no optimizations.

3.1.38 Recommendation: Consolidate files

The recommendation to reduce the metadata time overhead is to consolidate files, if there are

many created. When the same file is being opened and closed, the recommendation is to keep

it open until there are no more I/O operations accessing it.

3.1.39 Analysis: Percentage of I/O Wait

The I/O Wait metric provided by the SAR [33] utility from Linux, records the percentage of

time used for heavy load in I/O requests.

IF percentage of I/O Wait is high:

GO TO Section 3.1.34

ELSE code needs no optimizations.

3.1.40 Strategy: Load imbalance analysis

Parallel applications that suffer from load imbalance (unequal work distributed among threads

or processes) will have resources idling. In terms of CPU cycles, load imbalance is one of the

most expensive problems in parallel applications in the range of petaflops [114]. A delayed

working thread or process causes thousands of other processes to remain idle, which translates

directly into a massive waste of resources. If a code is running with load imbalance, it can not

be said that it is memory bound, even if a portion of the tasks or threads use the maximum

available bandwidth [88]. Thus, in the context of parallel programming, load imbalance is

the first priority of the list of performance bottlenecks. Load imbalance can be classified into

intra-node load imbalance and inter-node load imbalance. The load imbalance strategy map

presented in Figure 3.5 is divided into inter-node imbalance and intra-node imbalance.
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Figure 3.5: Imbalance Strategy Map

3.1.41 Analysis: Inter-node load imbalance

Inter-node process communication deals only with communication via an interconnect network.

This type of imbalance is more severe as it involves the idling of more resources than in the

intra-node load imbalance case.

IF inter-node load imbalance is high:

GO TO Section 3.1.42

ELSE code needs no optimizations with respect to inter-node load imbalance.

3.1.42 Recommendation: Inter-node load imbalance

Recommendations for an inter-node imbalance include an in-depth analysis of the parallel im-

plementation and the parallel paradigm used. Other recommendations given to the application

developer include the use of non-blocking communication. The application developer should

consider using the Dynamic Load Balancing (DLB) scheme.

3.1.43 Analysis: Intra-node load imbalance

Intra-node load imbalance occurs only within a node. Thus, the amount of resources idling are

bounded by the amount of resources in the node. Nevertheless, correcting imbalance problems

may improve other bottlenecks (such as memory boundedness of a group of cores in the node).

IF intra-node load imbalance is high:

GO TO Section 3.1.44

ELSE code needs no optimizations with respect to intra-node load imbalance.

3.1.44 Recommendation: Intra-node load imbalance

In-depth analysis is recommended. If the code has been parallelized with message passing, the

recommendation is to use threads (with libraries like OpenMP).
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3.1.45 Strategy: Analysis of usage of other resources

The usage of other resources analysis map is used to correlate the information of other resources

used by a parallel application with other obtained data. This map focuses on the monitoring

of data, whose analyses are on a post-mortem stage2. Exceptions to this include the network

usage. Figure 3.6 shows the strategy map for the monitoring of other resources.

Figure 3.6: Other Resources Strategy Map

3.1.46 Monitoring: Parallel inefficiency

Parallel efficiency is defined as the speedup divided by the number of processors used. Even

though parallel inefficiencies do not manifest themselves with a small number of cores [18], they

will impede the scaling of the code. Scalability can be quantified by comparing the execution

time of the same code run with different core numbers and calculating its speedup (with weak

or strong scaling). Comparing speedups with the number of processors will determine whether

a code is running with inefficient parallelism and whether the parallel paradigm should thus be

revised. Detecting parallel efficiency requires comparing data between jobs. It is also usually the

case that the analysis is done after the execution time is over, where the application developer

would benefit more from comparing the entire performance metrics spanned over time between

both jobs. A bigger effort on coding the analysis of parallel efficiency, plus the necessary changes

2The post-mortem stage refers to the stage after the application terminated, as opposed to on-line analysis.
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to the framework, would render very little benefit. However, the measurements that contribute

to this analysis in a post-mortem stage are indeed necessary. Monitoring without on-line analysis

should not be left out, given that the measurements will provide helpful insight on the parallel

efficiency at the visualization stage. The application developer will be able to compare at this

point two or more jobs to see whether a code scales or not.

IF parallel inefficiency is detected:

GO TO Section 3.1.47

ELSE code needs no optimizations with respect to parallel paradigm.

3.1.47 Recommendation: Revise parallel paradigm

The recommendation is to use in-depth analysis tools to analyze the adequacy of the parallel

paradigm used.

3.1.48 Analysis: Memory usage

The monitoring of the memory used can help to determine whether there is a memory leak.

Operation policies in the supercomputing sites in Germany allow applications to run with a fixed

amount of time, with resource managers preventing the application from running longer than

the specified wallclock. A memory leak will make a continuously running programme eventually

crash. Scientific application codes do not run continuously and can terminate successfully even

with a memory leak. However, the fixing of a memory leak can potentially remedy certain

problems within scalable efficiency, and memory usage. In an operation environment, a node

can be reserved to use some of its cores, while one or two cores remain idle, due to memory

constraints. This scenario is a workaround when the amount of memory per core is not sufficient.

If this constraint, however, is due to a memory leak, removing the memory leak will reduce the

amount of memory that can be assigned per core, allowing a better allocation of resources.

IF virtual memory is increasing:

GO TO Section 3.1.49

ELSE IF virtual memory is high:

GO TO Section 3.1.50

ELSE code needs no optimizations with respect to virtual memory.

3.1.49 Recommendation: Analyze code for memory leak

As a recommendation, the user should analyze the possibility of reducing the memory per core

and fitting the application in a lower number of cores. Even if this is not the case, it is still

suggested to check the code with a tool that uncovers memory leaks such as Valgrind [28].

3.1.50 Recommendation: Check memory usage

The possibility of reducing the total memory should be studied.
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3.1.51 Analysis: Network interconnect imbalance

The network interconnect refers to the network connection beetween two compute nodes, or

groups of nodes (such as racks, islands, and other group domains). Network interconnect

imbalance refers to an unequal bandwidth transmission among several nodes. Imbalance in

the network transmission can be analysed on a post-mortem stage. Transmission imbalance can

be a symptom of unequal data sets at each node.

IF network imbalance has been detected:

GO TO Section 3.1.53

ELSE no optimization is needed with respect to network imbalance.

3.1.52 Analysis: Network interconnect bandwidth

Network bandwidth and its usage can also be monitored. Packets which are too small relative

to the highest packet size should be consolidated to a larger one.

IF communication bandwidth is high:

GO TO Section 3.1.53

ELSE GO TO Section 3.1.54.

3.1.53 Recommendation: Check parallelization paradigm

High communication bandwidth is not necessarily a symptom of bad performance. However, an

in-depth analysis and an evaluation of the parallelization paradigm used is recommended. An-

other recommendation is to reduce the amount of communication: The feasibility of consuming

more data locally at a node, as opposed to sending it to other nodes, should be studied. If there

is a network imbalance, dynamic balancing of data should be considered.

3.1.54 Analysis: Network Bytes per packet

The mean size of the packets across the network interconnect can be analyzed to see whether

the network is being used efficiently. Small packet sizes do not optimally use the network

interconnect.

IF the mean network bytes per packet is small :

GO TO Section 3.1.55

ELSE code needs no optimizations with respect to network usage.

3.1.55 Recommendation: Consolidate network packets

The recommendation when many small network packets are sent, is to consolidate them into a

larger packet.
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3.1.56 Analysis: Energy usage

Another resource to be monitored is the energy consumption (or instant power) of the applica-

tion. The power consumed in a processor is an increasing superlinear function of the processor’s

frequency. Energy is the product of power and time, and by lowering the frequency of the pro-

cessor the power consumption is also lowered. However, in most cases lowering the frequency

will result in a longer runtime of the application, which in turn might result in an increase of

the energy consumed. Thus, it is necessary to find the appropriate frequencies that optimize

the energy consumption of an application. The energy consumption strategy will help to gain

insight on how a resource is being utilized.

IF energy consumption is high:

GO TO Section 3.1.57

ELSE code needs no optimizations with respect to energy consumption.

3.1.57 Recommendation: energy consumption

The settings of the core frequency can be changed in order to influence the energy consump-

tion. Performance data can be collected to apply a model which finds the optimal frequency for

minimizing the energy consumption [10]. As a recommendation in the case of load imbalance,

the thread (or task) with more load should be set to a higher frequency to minimize the idle

time of the other threads [94]. Another recommendation is that the application developers

experiment with different governors, or processor frequency policies, to minimize the energy

consumption [82].

The foregoing sections, which dealt with the monitoring or analysis of resource usage, to-

gether comprise a unified scheme for monitoring. The independent strategies, i.e. strategies

which are not connected to a tree, will be handled at the same level as the root of a tree strat-

egy. Thus, the strategies for I/O, parallel efficiency, load imbalance, memory bandwidth, and

resource usage will always be monitored. A tree strategy will start to monitor the root cause

and only refine when this analysis deems it necessary to continue to evaluate other properties;

the same concept is used in the Periscope search strategies [38]. In the next section, the analyses

done at each stage in a strategy are transformed into concrete properties.

3.2 Execution Properties

The objective of performing a first diagnosis at the monitoring stage is fulfilled by defining anal-

ysis formulae based on hardware events and other available metrics. These equations, along with

the severity and the threshold, formalize the search for bottlenecks and constitute a property.

The APART Specification Language (ASL) [32] describes a way to formalize the performance

patterns. This specification has been adapted to the needs of performance monitoring as a black

box by including the property value (or monitoring value). The properties can directly relate

an inefficiency with a low-performance coding practice. A property determines the degree of

33



CHAPTER 3. EXECUTION PROPERTIES AND STRATEGIES

severity of a performance deficiency, with the aid of two values: the property value and the

threshold. The Abstract Property Class is shown in Listing 3.1.

Listing 3.1: Abstract Property Class

1 class Property {
protected :

f loat propVal ;

s t r i n g ∗m e t r i c L i s t ;

5 FORMULA ID formID ;

f loat s e v e r i t y ;

f loat th r e sho ld ;

f loat exponent ;

9 f loat e v a l u a t e S e v e r i t y ( ) ;

public :

Property ( ) ;

virtual ˜ Property ( ) ;

13 virtual void eva luate ( PerformanceDataBase &pdb , int dev id ) = 0 ;

virtual int id ( ) = 0 ;

virtual bool cond i t i on ( ) ;

f loat getPropVal ( ) const ;

17 f loat getThreshold ( ) const ;

f loat g e t S e v e r i t y ( ) const ;

} ;

The property value and the severity are called propVal as shown in line 3, and severity as

shown in line 6. The severity is a normalized value between 0 and 1, where 1 indicates a severe

bottleneck and 0 no bottleneck. The array metricList holds the native hardware counters that

will be used in the property.

The properties evaluate the performance at different domains (for instance at logical hy-

perthread level, at core level, processor, and node level) depending on the available hardware

events for measurement. Every type of domain (also known as device) that is evaluated receives

a unique identification, the device id, or as shown in Line 13 the dev id, regardless of the

domain they represent. The PerformanceDataBase holds the performance measurements that

the evaluate method uses to calculate the propVal.

Given that object instantiation decreases performance, an optimization done to the Abstract

Property Class in Listing 3.1 is to instantiate it only once. The evaluate method (Line 13)

resets the member variables propVal and severity and evaluates them again. The getters

are called right after this evaluation to extract the information to make an output (either to a

database, a file system, or are sent through the network to another location).

The property id, see line 14, will return a designated identification number which is unique

to this property.
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The decision whether more specialized properties should be analyzed (the strategy defines

the sequence of properties) is given by the condition, see line 15. According to the properties

defined in a strategy, only those properties whose condition evaluates to true will be output.

The condition evaluates to true if the severity is greater than zero or for those properties that

require that they be collected even if their severity is zero, or false otherwise.

There are two common severity formulae used for the properties which can be used. They

can also be overridden (member variables at line 5 and 8 from the Abstract Property Class

in Listing 3.1). Since they are commonly used, they are available on the Abstract Property

Class, and the severity can be computed by defining these two member variables and calling

the evaluateSeverity method. The formula evaluated in the evaluateSeverity() method

can take the following two possibilities:

• The first formula (formID = FORMULA1) forces the values to the range 0 ≤ x ≤ 1 by

calculating:

s(x) =



0 if x/t− 1 < 0

1 if x/t− 1 > 1

(xt − 1)p if 0 ≤ x/t− 1 ≤ 1

(3.1)

where s is the severity, x the property value (propVal), p the exponent (equivalent to

the exponent in Abstract Property Class in Listing 3.1), and t the threshold. This

formula is used when an increase in the property value makes the bottleneck more severe

(severity increases). The parameter p in this formula will accelerate the growth of the

severity (0 < p < 1) or delay its growth (p > 1). Figure 3.7 shows the effect of p on the

severity formula (the range can be wider and only the values 0.5 < p < 2 are shown) and

the threshold t is shown with a green line. On the graph, the property value is increasing

to the right and shows no values, to make it generic for any property.

• The second formula (formID = FORMULA2), which is used when the severity is higher with

lower property values, is expressed as:

s(x) =



0 if (x/t)p > 1

1 if (x/t)p < 0

1− (xt )p if 0 ≤ (x/t)p ≤ 1

(3.2)

where s is the severity, x the property value (propVal), p the exponent (equivalent to the

exponent in Abstract Property Class in Listing 3.1), and t the threshold. Figure 3.8
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Figure 3.7: Severity formula FORMULA1

shows the effect of p on the severity formula. Similar to the previous severity formula

p can delay or accelerate the growth of the severity. On the graph, the property value

is increasing to the right and shows no values, making it generic for any property. The

parameter p which can take values p > 0 is shown (only the range [0.5, 2] are shown); and

the threshold, t, is shown with a green line.

Figure 3.8: Severity formula FORMULA2

Thresholds can be chosen based on the following heuristics:

• A threshold can be based on the hardware characteristics and expert knowledge. For

example: The threshold of the flop rate is 15% of the peak flop rate.

• A threshold can be based on a benchmark. For example: A code is considered memory

bound when the compute node is saturated with memory accesses using benchmark “X”.

• A threshold can be chosen at the point where the performance does not significantly change
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when improving the property value. In this case, the definition of what is significant is

based on the decision of the performance expert. For example: After increasing the I/O

mean size request with more than 2MB, the performance gains are less than 5%.

• A threshold is chosen based on statistical data. For example: Take the raw data from all

applications running in one week and set the threshold where the 80th percentile lies.

Example: The CPI property is given as an example for how the member variables are set

on the Abstract Property Class (Listing 3.1). CPI uses the hardware events for clock cycles

and instructions. The Abstract Property Class (Listing 3.1) can hold them in the metricList

member variable as shown in Line 4. The count of clock cycles and instructions are, in general,

directly available (rather than derived from other events) for all architectures. The events can

also be derived from other events, and the metricList would then hold the native events, and

the evaluation of the property (Line 13) should calculate the derived events. The propVal,

clock cycles divided by instructions, is calculated by the evaluate method. The bottleneck

can be considered to be more severe with an incrementing CPI after a threshold of 1.6. This

threshold was obtained from observing application runs during one week, and taking the 20th

percentile. The severity s can be calculated by using FORMULA1. In case of the CPI property

the filtering will be activated, i.e. the property is only collected when the severity is greater

than zero. Thus, the condition will evaluate to true if and only if the severity is greater than

zero.

Special case: For the case of the Memory Bandwidth property, there is a need to determine

whether there is saturation in order to trigger the corresponding analysis sub-tree; and not if

there is a severity (see Figure 3.1). Even if the result is that the code is memory bound or

compute bound the strategy refines to investigate the sub-strategy trees for both cases. If the

condition is false, according to the main algorithm, the strategy stops searching into more

detail. Thus, the Memory Bandwidth property needs to be replicated and coded into two

properties:

• Compute Bound Property

• Memory Bound Property

The id as well as the threshold will be the same for both versions of the Memory Bandwidth

property. However, the Memory Bandwidth Property designated to determine if a code is mem-

ory bound will return true from the condition method (line 15) if it is memory bound or false

otherwise. Similarly, the Memory Bandwidth property for compute bound code will set the

boolean flag to true when compute boundedness is detected, else false.

The implementation of the strategies is presented for two Intel processor architectures. In

the following sections the properties which have very specific features due to differences within
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the architecture are discussed. At the end of Sections 3.3 and 3.4 the strategy with an overview

of the properties is shown. The remaining sections are dedicated to architecture independent

properties.

3.3 Properties for the Westmere-EX Architecture

The Westmere-EX architecture [25] is a 10 core 32nm chip which belongs to the Intel Xeon

Processor E7 family. This architecture has a peak performance of 9.6 GFlop/s per core, and

features 30MB of cache. The architecture, also known as Intel Xeon E7-4870, runs at a maximum

of 2.40 GHz without turbo mode with a Thermal Design Power (TDP) of 130W, and it can

sustain up to 6.4 GT/s with the four Intel QPI links. The turbo mode allows the frequency to

increase to 2.8GHz in fewer cores while keeping the TDP constant. The relevant features for

code optimization are:

• The architecture decodes four x86 instructions per cycle.

• It uses the SSE4.2 instruction set that supports packed operations, particularly floating

point operations.

• A crossbar is used to connect the last level caches and the memory controller.

• It supports the hyperthreading technology also known as Simultaneous Multi-Threading

(SMT), which increases throughput by allowing the pipeline to be fed from two separate

sets of hardware registers. The HEP-SPEC06 benchmark [57, 58] delivers around a 25%

additional performance improvement thanks to the SMT technology. The architecture

presents two hardware threads that are able to feed the pipeline as shown in Figure 3.10.

While only hardware threads are shown in this figure, there is also the possibility of feeding

more logical threads. The SMT feature can be deactivated, allowing the monitoring of

eight events per core. However, when hyperthreading is activated, every thread has to keep

track of their available counters and, even though performance counters can be measured

per logical thread, the number of events to be measured at a time is halved.

• The hardware counters can be applied to different devices, making the collection of per-

formance counters more complex compared to previous architectures (like in the case of

Itanium architectures from Intel). There are events that can be measured per logical

thread, others per core and finally per uncore device. The uncore devices are devices

external to the core but are shared among the cores; for example: the Integrated Memory

Controller (IMC), the Quick Path Interconnect (QPI), and the L3 cache [53].

Figure 3.9 shows a simplified diagram of the chip architecture. Micro-architectural events

can be measured through the MSR kernel module available in Linux distributions. The MSR

files are pseudo files which can be written with different masks and read after an elapsed time

in order to access the event registers. Both uncore and core events are provided through the
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Figure 3.9: Westmere-EX Architecture

MSR files.

Figure 3.10: Pipeline with hyperthreading technology. Figure taken from [30].

The properties have been designed for the Westmere-EX architecture when the SMT is en-

abled. Due to space constraints in the formulae and long hardware counter names, many of

them have been renamed. Every property is describe with five items: a general explanation

with the hardware counters used, the domain where the property is measured or analyzed, how

the property value is calculated, how the severity is calculated, and finally how the condition is

calculated.
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3.3.1 Floating Point Operations Rate Property

When defining flop/s it has been taken into account that this architecture has the ability of

loading either four single precision floating point units or two double floating point units. These

are measured with the following hardware events as defined in the developer’s manual [4]:

• FP COMP OPS EXE.SSE SINGLE PRECISION hereafter called SP .

• FP COMP OPS EXE.SSE DOUBLE PRECISION hereafter called DP .

The floating point operations are evaluated as scalar (only one floating point is executed) or

packed (several floats are taken in one operation). These are:

• FP COMP OPS EXE.SSE FP SCALAR hereafter called Scalar.

• FP COMP OPS EXE.SSE FP PACKED hereafter called Packed.

Floating point operations are not measured as disjoint sets, which means that SP operations

contain Packed and Scalar operations in single precision. DP operations also include the

Packed and Scalar operations in double precision. On the other hand, Scalar operations

include both single and double precision scalar operations, and analog to this, the Packed

operations include both single, and double precision packed operations. Thus, there is no

immediate way to recognize the real floating point operations without an estimation when

performing black box monitoring.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value: Given that the floating point operations are not measured as disjoint sets

in these events, an adjustment needs to be made to the proportions of each set in order to

calculate the total floating point operations [15]. The scalar floating point operations are added

to a weighted count of the packed floating point operations. The formula is as follows:

Flop/s =
(4 · SP + 2 · kDP )

SP +DP
· Packed

T
+
Scalar

T
(3.3)

where T is the measuring time in seconds. This formula renders exact results if a code is only

using either SP or DP operations without mixing them.

Severity: This property uses the severity formula FORMULA2 (See formula 3.2).

Condition: This property is always collected. Therefore, the condition is always true.

3.3.2 Single Precision to Double Precision Flops Ratio Property

This property quantifies the ratio of single precision to double precision floating point operations.

The analysis takes into account only the operations done together to not penalize twice the usage

of double floating point operations.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are
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added.

Property Value:

SP to DP ratio =
SP

DP
(3.4)

Severity: This property uses the severity formula FORMULA2 (See formula 3.2).

Condition: The condition is true if and only if the severity is greater than zero.

3.3.3 Packed to Scalar Flops Ratio Property

Like in the single precision to double precision flops ratio property, the analysis is done by

considering the packed operations only once and which are performed simultaneously.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

PK to SC ratio =
Packed

Scalar
(3.5)

Severity: This property uses the severity formula: FORMULA2 (See formula 3.2).

Condition: The condition is true if and only if the severity is greater than zero.

3.3.4 Memory Bandwidth Properties

The Memory Bandwidth properties (memory bound and compute bound property) are essen-

tially the same but have two different condition methods. The events to measure bandwith

are only available per socket (uncore event). According to the Intel uncore manuals of the E7

processor family [53] the memory bandwidth can be measured with:

• The FVC EV0 BBOX.CMDS READS event counts the read commands from memory,

hereafter CmdReads.

• The IMT INSERTS WR event counts the write inserts registered at the In Memory Table

(IMT), hereafter ImtWrites.

Domain: Core level. The uncore events are weighted to obtain the memory bandwidth per

core.

Property Value: The volume of data transfered (in Bytes) at the level of the node is as

follows:

MemoryTransferNode = (CmdReads+ ImtWrites) · 64 (3.6)

Here, the constant 64 is the size of the loaded bytes per read or write. Both events, CmdReads

and ImtWrites, are monitored per channels and all channels are added together to the entire

node. Thus, to obtain a memory bandwidth per core, the L3 LAT CACHE.MISS event has

been used; an event which relates to a core, rather than to an uncore device. This event counts

the cache misses on the last level cache and includes speculative traffic as documented in [4],
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thus, it can be used to obtain a weight for the memory bandwidth used in a core. The ratio

per core is obtained with the following formula for each core:

Devicei =
L3 LAT CACHE.MISSi∑

devices(L3 LAT CACHE.MISS)
(3.7)

The memory bandwidth of core i, is then calculated as:

MemoryBW = Devicei ·
MemoryTransferNode

T
(3.8)

where T is the measuring time in seconds.

Severity: This property uses the severity formula: FORMULA1 (See formula 3.1).

Condition: The condition of the Compute Bound replicate Property evaluates to true if and

only if the memory bandwidth is smaller than or equal to the threshold. The condition of the

Memory Bound replicate Property evaluates to true if and only if the memory bandwidth is

greater than the threshold. Section 7.7 deals with how this threshold is set.

3.3.5 Intra-Node Load Imbalance Property

Load imbalance, in general, can be detected by examining the distance of the minimum value of

a hardware counter and the maximum value of the same counter. Figure 3.11 shows six different

cores used by an application, with measurements of the floating point operations per second in

four different timestamps. Timestamp two through four have a load imbalance:

• two groups of cores are working with very different GFLOPS/s (monitoring interval 2);

• all cores have a different load (monitoring interval 3);

• and, at least one core has a different load from the rest (monitoring interval 4).

The only case on Figure 3.11 where no imbalance is present is on the first monitoring interval, the

flops/s for all the cores is about the same rate. The rest of the cases show a common symptom,

the lowest and the highest flop rate are distant to each other. The events involved can be

selected according to the architecture. Flop/s reflects the load and work done in an arithmetic-

intensive application and an ideal candidate for detecting load imbalance. However, if the

architecture presents difficulties to correctly measure this metric, the instruction count would

be an alternative for this property. The event e chosen, instructions or flops, for the calculation

of intra-node load imbalance can be used to find the difference between the eMAX − eMIN ,

where eMAX , eMIN ∈ E, where E is the set of events for the chosen metric for all the devices

belonging to the same node. Intra-node load imbalance can be calculated in this architecture

by using flops/s (this means the event chosen is e = flops/s).

Domain: Node level.

Property Value:

IntraNodeImbalance = flop/sMAX − flop/sMIN (3.9)

42



3.3. PROPERTIES FOR THE WESTMERE-EX ARCHITECTURE

Figure 3.11: Detecting load imbalance with hardware counters

Severity: This property uses the severity formula: FORMULA1 (See formula 3.1).

Condition: The condition is true if and only if the severity is greater than zero.

3.3.6 Inter-Node Load Imbalance Property

Inter-node load imbalance can be detected by calculating the difference between eMAX − eMIN ,

where eMAX ∈ E1 and eMIN ∈ E2 and having E1 6= E2, i.e. the maximum and the minimum do

not belong to the same node, otherwise intra-node load imbalance would be detected. However,

the algorithm to search for a maximum and a minimum will require decision trees if a maximum

and minimum are found on the same node. A simpler approach to looking for the next maximum

on another node, or the next minimum on another node is to calculate averages values at each

node, i.e. µEi where i = 1, 2, 3, ..., N where N is the number of nodes in an application. Inter-

node load imbalance can then be calculated by finding the difference between the maximum

and the minimum average, i.e. µMAX − µMIN . If there is a measurement missing in a node,

for example due to a counter overflow, the average hides this fact since the number of available

observations to calculate the average is always taken and not the total number of devices. The

average of a node will weaken the effects of a present intra-node load imbalance. Nonetheless, the

previously defined property analyzes intra-node load imbalance and will detect this bottleneck.

Domain: Application level.

Property Value: Inter-node load imbalance can be calculated with the average of the flops/s

over a node, and comparing the averages of all nodes in a job, i.e. µflops/si where i = 1, 2, 3, ..., N

where N is the number of nodes in an application. The property value is then:

InterNodeImbalance = MAX(µflops/s)−MIN(µflops/s) (3.10)

Severity: This property is always evaluated independent of the severity (uses no severity for-

mula) given that inter-node imbalance is done at the post-mortem stage and not on-line.

Condition: The condition is always true.
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3.3.7 Core Frequency Property

Monitoring the frequency of execution will provide insight to the usage of resources when cor-

related to the other properties. The frequency is measured with:

• The CPU CLK UNHALTED.CORE event counts the unhalted core cycles, i.e. the cycles

where the core is active.

• The CPU CLK UNHALTED.REF event counts the unhalted reference cycles.

The events are available also at the level of the hyperthread (despite the name ’CORE’ in the

CPU CLK UNHALTED.CORE event).

Domain: Core level. The counts of an event from two SMT threads that belong to a core

are added. The cores in the same processor can’t have different frequencies. However, the

frequencies are taken for each core (even if they are the same in all the processor).

Property Value:

Frequency =
CPU CLK UNHALTED.CORE

CPU CLK UNHALTED.REF
· F0 (3.11)

Where F0 is the minimum available frequency provided by the architecture.

Severity: The severity formula is not used for this property as all values are collected.

Condition: The condition is always true.

3.3.8 Instruction Rate Property

The instruction rate on its own has also been defined as a property. The INST RETIRED.ANY

event counts the instructions which have been retired after execution.

Domain: Core level. The INST RETIRED.ANY event from SMT threads that belong to a

core are added together.

Property Value:

Instructions/s = INST RETIRED.ANY/T (3.12)

where T is the measuring time in seconds.

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is always true.

3.3.9 CPI Property

The clocks per instruction property is part of a set of widely used metrics for performance

comparisons [88].

Domain: Core level. The counts of an event from two SMT threads that belong to a core are
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added.

Property Value:

CPI =
CPU CLK UNHALTED.CORE

INSTR RETIRED.ANY
(3.13)

Severity: The severity formula used is FORMULA1 (See formula 3.1), except when CPI is low

and the floating point operations rate is low. In this case then the severity formula of the flop/s

is used.

Condition: The condition is true if and only if the severity is greater than zero.

3.3.10 Stall Cycles Property

In the Westmere-EX architecture the stall cycles property identifies the amount of cycles which

were not dispatched to the execution units as a ratio to the number of all retired micro opera-

tions. The stalled cycles property is measured with:

• The UOPS EXECUTED.PORT015 STALL CYCLES event counts the micro operations

which have stalled.

• The UOPS RETIRED.ANY event counts all the micro operations.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

StallCycles =
UOPS EXECUTED.PORT015 STALL CY CLES

UOPS RETIRED.ANY
(3.14)

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is true if and only if the severity is greater than zero.

3.3.11 Branch Missprediction to Instructions Ratio Property

The branch missprediction to the number of instructions is a ratio that provides insight into the

usage of branches with respect to other instructions. The BR MISP RETIRED.ALL BRANCHES

event measures the mispredicted branches.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

BranchMisspredicion =
BR MISP RETIRED.ALL BRANCHES

INST RETIRED.ANY

(3.15)

Severity: The severity formula used is FORMULA1 (See formula 3.1)

Condition: The condition is true if and only if the severity is greater than zero.
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3.3.12 Branch Missprediction to Branches Ratio Property

This property provides a more detailed analysis to the usage of branches than the previous

property. The BR INST RETIRED.ALL BRANCHES event measures the total amount of

branches.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

BranchMisspredicion =
BR MISP RETIRED.ALL BRANCHES

BR INST RETIRED.ALL BRANCHES

(3.16)

Severity: The severity formula used is FORMULA1 (See formula 3.1)

Condition: The condition is true if and only if the severity is greater than zero.

3.3.13 Loads to Stores Ratio Property

The loads to stores ratio property is used to analyze to what extent the loaded data has been

used to create “new” data to be stored. The property formula can be calculated from the

following events:

• The MEM INST RETIRED.LOADS event that counts loads from memory, hereafter

MemLoad.

• The MEM INST RETIRED.STORES event counts stores to memory, hereafterMemStore.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

LoadsToStoresRatio =
MemLoad

MemStore
(3.17)

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is true if and only if the severity is greater than zero.

3.3.14 L3 Cost Property

The last level cache cost property uses an estimate of the cost of the lost cycles when accessing

the L3 cache. The latencies for transferring blocks from or to the L3 cache costs on average

between 25 to 31 compute cycles as shown on Table 3.1. It is recommended in the Software

Developer’s Manual [4] to use 27 cycles as an average cost, which is taken into account in the

property value formula. The MEM LOAD RETIRED.L3 UNSHARED HIT event counts the

L3 level cache hits, hereafter L3 Hits.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are
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Cache level Average cost of cycles

L1 6 cy

L2 12 cy

L3 25 - 31 cy

Memory 70 cy

Table 3.1: Westmere-EX: Cache latencies. Taken from the IA64 and IA32 Software Developers Man-

ual [4].

added.

Property Value:

L3CyclesRatio = 27 · L3 Hits

CPU CLK UNHALTED.CORE
(3.18)

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is true if and only if the severity is greater than zero.

3.3.15 L3 Misses to Instruction Ratio Property

If the ratio of L3 misses to instructions is high this means that L3 misses are significantly

impacting the performance of the code. The MEM LOAD RETIRED.L3 MISS event counts

the L3 cache misses, hereafter L3 Misses.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

L3InstructionRatio =
L3 Misses

INSTR RETIRED.ANY
(3.19)

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is true if and only if the severity is greater than zero.

3.3.16 L3 Bandwidth Property

For the L3 bandwidth property it is only necessary to calculate the bandwidth from two hard-

ware events which counts the number of lines which have been evicted from and/or loaded to

the L2 cache. These events are:

• The L2 LINES IN.ANY event counts all the lines loaded into the L2 cache, hereafter

L2 all.

• The L2 LINES OUT.DEMAND DIRTY event counts all the lines which have been evicted

by demand, hereafter L2 dirty.
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Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value: Each line transports 64 bytes, thus, the L3 bandwidth is given by:

L3Bandwidth = 64 · (L2 all + L2 dirty)

T
(3.20)

where T is the measuring time in seconds.

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is true if and only if the severity is greater than zero.

3.3.17 L3 Hits to Misses Property

This property examines the amount of cache hits with respect to cache misses.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

L3HitstoMiss =
L3 Hits

L3 Misses
(3.21)

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is true if and only if the severity is greater than zero.

3.3.18 Expensive Instructions Property

The rate of expensive instructions property can be counted with theARITH.CY CLES DIV BUSY

event. However, the event may produce wrong results when SMT is enabled [4].

Domain: Core level. The ARITH.CY CLES DIV BUSY event from SMT threads that be-

long to a core are added together.

Property Value:

ExpensiveInstructions/s =
ARITH.CY CLES DIV BUSY

T
(3.22)

where T is the measurement time in seconds.

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is true if and only if the severity is greater than zero.

3.3.19 Strategy for the Westmere-EX

The designed properties for the Westmere-EX architecture are arranged into a hierarchy as

illustrated on Figure 3.12. Given that a QPI transfer rate is not explicitly found on the uncore

manual for the Intel Xeon Processor E7 family [53], the corresponding property was excluded

from the strategy tree. The memory bandwidth strategy for compute bound and for memory
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bound code both branch to a sub-strategy tree of floating point operations for analysis. The

floating point operations are collected without filtering to see the performance of the entire

machine. Due to the previous reasons, the sub-tree for floating point operations will be analyzed

disconnectedly and independently of the memory bandwidth strategy and will become a root

property itself.
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Figure 3.12: Strategy for the Westmere-EX Architecture
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3.4 Properties for the Sandy Bridge-EP Architecture

The Sandy Bridge-EP micro-architecture [24], also known as Intel Xeon E5-2680, is an 8 core

32nm chip, has a base clock speed of 2.7 Ghz, 20M of L3 cache, and can sustain up to 8 GT/s

with the four Intel QPI links. Like the Westmere-EX, it also uses the hyperthreading technology

(SMT) and has a Thermal Design Power of 130W. The turbo mode allows the frequency to

increase to 3.5GHz in fewer cores while keeping power within the designed envelope. The Sandy

Bridge-EP introduced several new architectural features with respect to the Westmere-EX which

require a different analysis than the preceding architecture. The L3 cache is distributed as

segments at each core with a ring bus connecting all segments (Figure 3.13). This in turn

reduces the penalty for last level cache transfers in comparison to the previous architecture

(Table 3.2). Moreover, it has the Advanced Vector eXtensions (AVX) instruction set extension

which uses a 256 bit SIMD register with twice the width of Streaming SMD Extensions (SSE)

found in the Westmere-EX. An ADD and MULTIPLY pipelined instruction can be performed

in one cycle. Table 3.2 shows the cache and memory latencies to move data to and from the

registers.

Figure 3.13: Sandy Bridge-EP Architecture. LLC stands for last level cache, also known as L3 cache.

Similar to the Westmere-EX architecture there are several devices that can be monitored:

hardware thread, core (which contains two hardware threads), and uncore events which are the

shared devices among the cores [54]. All the properties were designed considering SMT to be

activated.

3.4.1 Floating Point Operations Rate Property

Floating point operations are flawed on this architecture [19, 111], the percentage of error to

the number of flops oscillates, to up to a factor of six, making the flop count unreliable. The

counters increase when the flop instruction is issued and not on retirement. So re-issues, due to
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Cache level Average cost of cycles

L1 Cache 6 cy

L2 Cache 12 cy

L3 Cache 25 - 31 cy

Memory 50 cy

Table 3.2: Sandy Bridge-EP: Cache latencies. Software Developer’s Manual [4]

input arguments not being ready, will produce over counting of the event. The events provided

to measure the flops are:

• The FP COMP OPS EXE SSE FP PACKED DOUBLE event which counts the double

precision floating point packed SSE operations, hereafter Packed DP . The architecture

is capable of performing 2 floating operations of this kind at a time.

• The FP COMP OPS EXE SSE FP PACKED SINGLE event which counts the single pre-

cision floating point SSE operations, hereafter Packed SP , the architecture can perform

4 flops of this kind at a time.

• The FP COMP OPS EXE SSE FP SCALAR DOUBLE event counts the double preci-

sion floating point operations, hereafter FP DP .

• The FP COMP OPS EXE SSE FP SCALAR SINGLE event counts the single floating

point operations, hereafter FP SP .

• The FP 256 PACKED SINGLE event counts AVX floating point operations which corre-

sponds to the eight packed flops at single precision, hereafter FP SPAVX .

• The FP 256 PACKED DOUBLE event counts AVX floating point operations which cor-

responds to four packed flops at double precision, hereafter FP DPAVX .

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value: Thus the counting of flops is expressed as:

Flops/s = (2 ∗ Packed DP + 4 ∗ Packed SP + FP DP

+ FP SP + 8 ∗ FP SPAVX + 4 ∗ FP DPAVX)/T (3.23)

where T is the measuring time in seconds. In contrast to the previous architecture, the events

have been provided as disjunct sets. Thus, it is only necessary to multiply the number of real

floating point operations and the number of counts in the event. In practice, counting the num-

ber of floating point operations presents one difficulty. When the Sandy Bridge-EP architecture

uses the hyperthreading SMT technology, it is only possible to read four programmable counters

at a time. Thus, to read the number of flops, it is necessary to apply either multiplexing or read

them one after the other. Both cases are an estimation in the case of black box monitoring.
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The PAPI tool [79] provides a generic interface to all architectures and, for the case of the

Sandy Bridge-EP architecture, they are bound to only measure four counters. The PAPI inter-

face only measures the amount of packed operations, not taking into account that one packed

operation includes several real floating point operations. The interface adds this to the scalar

operations, without including the AVX operation (i.e. the events FP 256 PACKED SINGLE

and FP 256 PACKED DOUBLE are excluded) so a vectorized AVX code will deliver zero flops

with this interface. Even though this is documented [6], the philosophy of having one interface

for all architectures breaks with such an example. This is a reason why a generalization with

a single interface to be used in many architectures should be avoided, and the events that con-

tribute to a desired metric should be carefully studied to design a property.

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: This property is always collected. Therefore, the condition is always true.

3.4.2 Vectorized to Scalar Ratio Property

The child property to the flops count is the ratio of all vectorizations, including AVX and SSE,

with respect to the scalar operations. The following definitions are needed for this property:

vector = FP SPAVX + FP DPAVX + Packed DP + Packed SP (3.24)

scalar = FP DP + FP SP (3.25)

The amount of flops that are calculated at once are not considered in this ratio, otherwise the

penalty for not using SSE and AVX increases.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

V ectorToScalar =
vector

scalar
(3.26)

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is true if and only if the severity is greater than zero.

3.4.3 AVX to SSE Ratio Property

The child property AVX to SSE ratio is also a function of the hardware events that count flops.

Two definitions are necessary for this property:

avx = FP SPAVX + FP DPAVX (3.27)

sse = Packed DP + Packed SP (3.28)

Like in the previous property, the amount of operations which are calculated should be left out

to avoid a double penalty.
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Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

FlopsAV X SSEratio =
avx

sse
(3.29)

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is true if and only if the severity is greater than zero.

3.4.4 Single Precision to Double Precision Property

The child property analyses the single precision to double precision ratio. The following defini-

tions are needed for this property:

FPDP = Packed DP + FP DP + FP DPAVX (3.30)

FPSP = Packed SP + FP SP + FP SPAVX (3.31)

Like in the previous property, the amount of operations which are calculated should be left out

to avoid a double penalty.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

FlopsSPtoDPRatio =
FPSP

FPDP
(3.32)

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is true if and only if the severity is greater than zero.

3.4.5 Core Frequency Property

The property for monitoring the frequency is the same one as shown in formula 3.11, and uses

the same hardware events. It is known that in x86 64 architectures, the memory performance

is influenced by the clock speeds [101]. In this architecture, the best memory bandwidths are

obtained with the highest frequencies and a high number of cores, but using only one thread

per core.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

Frequency =
CPU CLK UNHALTED.CORE

CPU CLK UNHALTED.REF
· F0 (3.33)

Where F0 is the minimum available frequency provided by the architecture.

Severity: The severity formula is not used for this property as all values are collected.

Condition: The condition is always true.
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3.4.6 Instruction Rate Property

The instruction rate can be done in the same way as formula 3.12 (with the same events as in

the Westmere-EX architecture).

Domain: Core level. The INST RETIRED.ANY event from SMT threads that belong to a

core are added together.

Property Value:

Instructions/s = INST RETIRED.ANY/T (3.34)

where T is the measuring time in seconds.

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is always true.

3.4.7 CPI Property

The CPI count can be done in the same way as formula 3.13 and with the same events as in

the Westmere-EX architecture.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

CPI =
CPU CLK UNHALTED.CORE

INSTR RETIRED.ANY
(3.35)

Severity: The severity formula used is FORMULA1 (See formula 3.1), except when CPI is low

and the floating point operations rate is low. In this case then the severity formula of the flop/s

is used.

Condition: The condition is true if and only if the severity is greater than zero.

3.4.8 Memory Bandwidth Property

Analogously to the Westmere-EX architecture, this property is replicated to analyze compute

bound and memory bound code. The properties compute exactly the same property value and

severity, only the condition changes.

Domain: Core level. The uncore events are weighted to obtain the memory bandwidth per

core.

Property Value: The memory bandwidth can be calculated by adding the memory events at

the four memory controller channels. The volume of data (in Bytes) can be calculated with:

MemoryTransferNode = (CAS COUNT.RD + CAS COUNT.WR) · 64 (3.36)

The CAS COUNT events for read and write (extension .RD and .WR) are monitored per

channel and all the channels are added together. This will provide, however, a unique event for

the entire node. Channels can’t be assigned uniquely to cores, since they are shared resources.
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Thus, to obtain a memory bandwidth per core, the L3 LAT CACHE.MISS event has been used;

an event which relates to a core, rather than to an uncore device. This event counts the cache

misses on the last level cache and includes speculative traffic as documented in [4], thus, it can

be used to obtain a percentage of the memory bandwidth used in a core. The ratio is obtained

with the following formula:

Devicei =
L3 LAT CACHE.MISSi∑

devices(L3 LAT CACHE.MISS)
(3.37)

The memory bandwidth of core i, is then calculated as:

MemoryBW = Devicei ·MemoryTransferNode/T (3.38)

where T is the measuring time in seconds.

Severity: This property uses the severity formula: FORMULA 1 (See formula 3.1).

Condition: The condition of the Compute Bound replicate property evaluates to true if and

only if the memory bandwidth is smaller than or equal to the threshold. The condition of the

Memory Bound replicate property evaluates to true if and only if the memory bandwidth is

greater than the threshold.

3.4.9 Intra-node Load Imbalance Property

Intra-node load imbalance is calculated as described in Section 3.3 by using the difference

between the maximum and the minimum of an event e. The rate of floating point operations

is not used, due to the known overcounting of these operations. Even if the floating point

operations would be exact, the six events can’t be measured together, so only an estimation is

available. The event chosen is, therefore, the intruction rate for this architecture.

Domain: Node level.

Property Value:

IntraNodeImbalance = instr/sMAX − instr/sMIN (3.39)

where instr/sMAX , instr/sMIN ∈ INode where INode is the set of instruction rates for the cho-

sen metric for all the devices belonging to the same node.

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is true if and only if the severity is greater than zero.

3.4.10 Inter-node Load Imbalance Property

Inter-node load imbalance can be detected by calculating the average of the instructions over a

node, and comparing the averages of all nodes in a job, i.e. µIi where i = 1, 2, 3, ..., N where

N is the number of nodes in an application, and by finding the distance of the minimum and

the maximum average, i.e. µMAX −µMIN . Using flop/s is not the best choice, see the previous

Property (Intra-node Load Imbalance Property).
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Domain: Application level.

Property Value:

InterNodeImbalance = MAX(µI/s)−MIN(µI/s) (3.40)

Severity: This property is always evaluated independent of the severity (uses no severity for-

mula) given that inter-node imbalance is done at the post-mortem stage and not on-line.

Condition: The condition is always true.

3.4.11 Branch Misspredections to Instructions Ratio Property

The branch missprediction to instructions ratio property reflects the rate of branch misspredic-

tions to the total number of branches.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

BranchMissesToInstructions =
BR MISP RETIRED.ALL BRANCHES

INST RETIRED.ANY
(3.41)

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is set to true if and only if the severity is greager than zero.

3.4.12 Branch Misspredections to Branches Ratio Property

The branch missprediction property reflects the rate of branch misspredictions to the total

number of branches.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

BranchMisspredictionToBranches =
BR MISP RETIRED.ALL BRANCHES

BR INSTR RETIRED.ALL BRANCHES
(3.42)

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is set to true if and only if the severity is greager than zero.

3.4.13 Expensive Instructions Property

A long latency instruction count was not explicitly defined in the list of hardware events of this

architecture. It was found, however, that the ARITH.FPU DIV ACTIVE event is useful for

counting division related executions.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are
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added.

Property Value:

ExpensiveInstructions/s = ARITH.FPU DIV ACTIV E/T (3.43)

where T is the measurement time in seconds.

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is set to true if and only if the severity is greager than zero.

3.4.14 Loads to L3 Cache Misses Ratio Property

This property analyzes the ratio of loads to L3 cache misses.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

LoadsToMisses =
MEM UOP RETIRED.LOADS

MEM LOAD UOPS MISC RETIRED.LLC MISS
(3.44)

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is set to true if and only if the severity is greager than zero.

3.4.15 Loads To Stores Ratio Property

This property analyzes the ratio of loads to stores.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

LoadsToStores =
MEM UOP RETIRED.LOADS

MEM UOP RETIRED.STORES
(3.45)

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is set to true if and only if the severity is greager than zero.

3.4.16 L3 Cost Property

The last level cache cost uses, in the case of the Sandy Bridge-EP architecture, 26 cycles as an

average for each cache miss (see Table 3.2). It uses the MEMLOAD UOPS RETIRED.LLC HIT

event, hereafter L3Hits.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

L3CyclesRatio = 26 · L3Hits

CPU CLK UNHALTED.CORE
(3.46)
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Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is set to true if and only if the severity is greager than zero.

3.4.17 L3 Misses to Instruction Ratio Property

The L3 cache misses to the retired instructions ratio helps determine whether L3 misses are dom-

inating the inefficiencies in the code. The MEM LOAD UOPS MISC RETIRED.LLC MISS

counts the number of L3 misses, hereafter L3Misses.

Domain: Core level. The counts of an event from two SMT threads that belong to a core are

added.

Property Value:

L3InstructionRatio =
L3Misses

INSTR RETIRED.ANY
(3.47)

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is set to true if and only if the severity is greager than zero.

3.4.18 L3 Bandwidth Property

L3 bandwidth is calculated with the L2 lines which were loaded and the L2 evicted lines, similar

to the Westmere-EX property. Every line contains 64 bytes. For the property value formula,

the following hardware events have been used:

• L2 LINES IN.ALL event counts the loaded lines to L2, hereafter L2all.

• L2 LINES OUT.DEMAND DIRTY event counts the evicted lines, hereafter L2dirty.

Domain: Core level. An event from two SMT threads that belong to a core is added together.

Property Value:

L3Bandwidth = 64 · (L2all + L2dirty)/T (3.48)

where T is the measuring time in seconds.

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is set to true if and only if the severity is greager than zero.

3.4.19 L3 Hits to Misses Ratio Property

This property examines the ratio of L3 cache hits with respect to L3 cache misses.

Domain: Core level. An event from two SMT threads that belong to a core is added together.

Property Value:

L3HitstoMiss =
L3Hits

L3Misses
(3.49)
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Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is set to true if and only if the severity is greager than zero.

3.4.20 QPI Property

The QPI Property for the Sandy Bridge-EP architecture can be measured in levels. The counter

involved is the QPI RATE STATUS and the last three bits of this counter provides information

of the GT/s level [54]. For example: 010 corresponds to a rate of 5.6 GT/s and 011 corresponds

to 6.4GT/s.

Domain: Socket level.

Property Value:

QPI = decode(QPI RATE STATUS) (3.50)

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is set to true if and only if the severity is greager than zero.

3.4.21 Package Power Property

The measurement of average power on the measurement interval is available through the Run-

ning Average Power Limit, RAPL, counters. The RAPL counters provide an estimation of

energy performance with some shortcomings; for instance, the wraparound overflow time is

approximately every 60 seconds and not every component of the motherboard can be mea-

sured [102]. The Sandy Bridge-EP architecture has counters for measuring the DRAM, the

package, and the power plane 0 and 1 [83].

Domain: Socket level.

Property Value:

PowerProcessor = POWER PKG.WATT (3.51)

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is always set to true.

3.4.22 DRAM Power Property

The measurement of average DRAM power on the measurement interval is available through

the Running Average Power Limit, RAPL, counters.

Domain: The domain is at the level of a DRAM pertaining to one socket.

Property Value:

PowerDRAM = POWER DRAM.WATT (3.52)

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is always set to true.
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3.4.23 Strategy for the Sandy Bridge-EP Architecture

The designed properties for the Sandy Bridge-EP architecture are arranged into a hierarchy

as illustrated on Figure 3.14. Like in the strategy designed for the Westmere-EX, the floating

point operation analysis has been assigned as root properties. The floating point operations are

collected without filtering to see the performance of the entire machine.
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Figure 3.14: Strategy for the Sandy Bridge-EP Architecture
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3.5 Architecture independent Properties

The monitoring of non-architectural dependent properties can be done by reading operating

system specific information or via other tools which provide measurement on other components,

like file system and network traffic. The following properties are also part of the monitoring

scheme.

3.5.1 Memory Property

The memory usage can be parsed value from the kernel’s virtual system: /proc/meminfo. This

property helps detect if a memory leak is present.

Domain: Node level.

Property Value:

MemoryUsed = MemTotal −MemFree (3.53)

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is always set to true.

3.5.2 User Percent Property

The System Activity Report (SAR) [33] utility can be used to monitor real time performance

giving a percentage of use of a resource. An advantage of the SAR tool is that it does not

conflict when two measurements concur. The measurement is based on the Linux standard

commands which can be measured across all micro-architectures as long as they are running on

a Linux operating system. The definition of this property is: “Percentage of CPU utilization

that occurred while executing at the user level (application). Note that this field includes time

spent running virtual processors.” [33]

Domain: Core level. The User% event from two SMT threads that belong to a core is added

together.

Property Value:

USERPCT = User% (3.54)

Severity: The property uses a simplified severity formula and is defined as:

s = 1− USERPCT

t
(3.55)

where t is a threshold, s is the severity, such that the higher the percentage of the resource is

used, the better the performance is.

Condition: The condition is always set to true.
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3.5.3 System Percent Property

The system percent is another measurement taken from the SAR tool. The event is defined

as: “Percentage of CPU utilization that occurred while executing at the system level (kernel).

Note that this field includes time spent servicing interrupts and softirqs.” [33]

Domain: Core level. The System% event from two SMT threads that belong to a core is

added together.

Property Value:

SY STEMPCT = System% (3.56)

Severity:

s =
SY STEMPCT

t
(3.57)

where t is a threshold, and s is the severity. The application should try to avoid as much as

possible using system calls.

Condition: The condition is always set to true.

3.5.4 I/O Wait Percent Property

The I/O wait is the third measurement taken from the SAR tool. The event is defined as: “Per-

centage of time that the CPU or CPUs were idle during which the system had an outstanding

disk I/O request.” [33]

Domain: Core level. The IOWait% event from two SMT threads that belong to a core is

added together.

Property Value:

IOWAITPCT = IOWait% (3.58)

Severity:

s =
IOWAITPCT

t
(3.59)

Where t refers to a threshold and s to the severity.

Condition: The condition is always set to true.

3.5.5 I/O Properties

Since I/O reading and writing to a file system is one of the slowest transfers of data. It has been

observed that the values of this metric are always very small (typically, less than 3%) even if an

application is performing intensive I/O. Other properties have to be considered to complement

this property.

Other I/O properties are not dependent on the hardware architecture but on the underlying

file system and available tools for measuring metrics. Typically, available information to be

monitored includes bandwidth used for reading and writing. The following properties have been

designed by using the metrics from the mmpmon [51] tool; a tool used by GPFS filesystems.
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3.5.6 I/O Read Bandwidth Property

The I/O read bandwidth is measured by taking the total read bytes and dividing them by the

basic measurement time.

Domain: Node level.

Property Value:

ReadBandwidth = Read Bytes/T (3.60)

where T is the measurement time in seconds.

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is true if and only if the property value is greater than zero (I/O

read operations are being performed).

3.5.7 I/O Write Bandwidth Property

The I/O read bandwidth is measured by taking the total written bytes and dividing them by

the basic measurement time.

Domain: Node level.

Property Value:

WriteBandwidth = Written Bytes/T (3.61)

where T is the measurement time in seconds.

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is true if and only if the property value is greater than zero (I/O

write operations are being performed).

3.5.8 I/O Mean Read Request Size Property

This property analyzes the I/O mean read request size.

Domain: Node level.

Property Value: The property value can be calculated by dividing the I/O read bytes by the

total amount of read operations.

ReadBWPerOp =
ReadBandwidth

Reads
(3.62)

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is true if and only if the property value is greater than zero.

3.5.9 I/O Mean Write Request Size Property

This property analyzes the I/O mean write request size.

Domain: Node level.
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Property Value: The property value can be calculated by dividing the I/O read bytes by the

total amount of write operation.

WriteBWPerOp =
WriteBandwidth

Writes
(3.63)

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is true if and only if the property value is greater than zero.

3.5.10 Number of File Open Operations Property

This property monitors the number of opens done in a second, a property which reflects the

number of times when meta-data has been requested. Even though the values are given per

second, it is not the intention to measure how fast this rate is, but if the number of open requests

is high.

Domain: Node level.

Property Value:

Opens/s = IO Opens/T (3.64)

where T is the measurement time in seconds.

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is true if and only if the property value is greater than zero.

3.5.11 Number of File Close Operations Property

This property monitors the number of closes done in a second. Even though the values are

given per second, it is not the intention to measure how fast this rate is, but if the number of

close requests is high.

Domain: Node level.

Property Value:

Closes/s = IO Closes/T (3.65)

where T is the measurement time in seconds.

Severity: The severity formula used is FORMULA1 (See formula 3.1).

Condition: The condition is true if and only if the property value is greater than zero.

—

The following properties are related to the network usage of an InfiniBand fabric, and are

based on the perfquery command line tool [92].
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3.5.12 Transmission Bandwidth Property

This property monitors the transmitted network bytes per second (network bandwidth).

Domain: Node level.

Property Value:

XmitBW = Transmitted Bytes/T (3.66)

where T is the measurement time in seconds.

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is true if and only if the property value is greater than zero.

3.5.13 Received Bandwidth Property

This property monitors the received network bytes per second (network bandwidth).

Domain: Node level.

Property Value:

RecvdBW = Received Bytes/T (3.67)

where T is the measurement time in seconds.

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is true if and only if the property value is greater than zero.

3.5.14 Mean Transmitted Bytes per Packet Property

This property analyzes the mean transmitted bytes per packet.

Domain: Node level.

Property Value:

XmitBytesPerPacket =
XmitBytes

Packets
(3.68)

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is true if and only if the property value is greater than zero.

3.5.15 Mean Received Bytes per Packet Property

This property analyzes the mean received bytes per packet.

Domain: Node level.

Property Value:

RcvdBytesPerPacket =
RcvdBytes

Packets
(3.69)

Severity: The severity formula used is FORMULA2 (See formula 3.2).

Condition: The condition is true if and only if the property value is greater than zero.
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3.5.16 Strategy for Micro-Architecture Independent Properties

The micro-architecture independent properties are evaluated at the node as root properties.

The parent-child relations among the properties are shown in Figure 3.15.

Figure 3.15: Strategy for architecture independent properties
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4
Functionality of the PerSyst Tool

This chapter describes the functionality of the agent types in the hierarchy such as the commu-

nication interaction, the cycle control, and the transport of properties. The agent hierarchy is

introduced in the following section. Section 4.2 describes the main functionality of the agents

and the communication among them, including the framework implemented solutions for time

control, concurrent measurements, and failure recovery.

4.1 Agent Hierarchy

The PerSyst Tool has been developed as distributed software with a tree agent hierarchy. The

three types of agents are the synchronization agent, or SyncAgent; the Collector agent; and

the PerSyst agent, as shown in Figure 4.1. The main functionalities of the SyncAgent are to

synchronize measurement, the Collector agents collect the performance data, and the PerSyst

agents perform the measurements. All of the agents comprise the transport system for analyzed

performance data.

Figure 4.1: Agent Hierarchy

The software is designed to have one layer of PerSyst agents, one layer of Collector agents

which manage the PerSyst agents, and there is at least one SyncAgent as the frontend. The term
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middle layers will be used in this chapter for all the agents which are between the frontend and

the PerSyst agents. For systems in the range of hundreds of thousands of cores, it is necessary to

include more layers of SyncAgents in the middle layers of the hierarchy (as shown in Figure 4.1).

4.2 Agent Functionality

The main functionality of the PerSyst Tool is to analyze, filter, collect, and aggregate perfor-

mance data. The aggregation uses a fixed number of quantiles for all cores in a job. It is

known that aggregation of subsets of quantiles is only possible in special cases, refer to Sec-

tion 5, and can only be done using estimations of the accumulated distributed frequency of each

subset. Thus, two types of aggregations are used: estimation of quantiles or exact calculation.

The SyncAgents only perform estimation of quantiles, while the Collector Agents and PerSyst

Agents perform exact calculation of quantiles. Detailed functionality regarding quantile aggre-

gation is provided in Chapter 5.

All types of agents are daemonized1 and implement a continuously running loop that can

react to inbound communication as well as to initiate communication with other agents. Agents

are uniquely identifiable by the pair hostname-port. However, to simplify the handling, the

agents receive a unique number, hereafter the tag.

4.2.1 SyncAgent

The SyncAgent can be used as the frontend2 of the entire tree. It can also be used in the sub-

sequent layers of the tree hierarchy below the frontend, as shown in Figure 4.1. The SyncAgent

can be set with a flag to be the frontend. This agent triggers the measuring cycle and controls

the agent tree. The cycle control for defining the measuring and idles times is held at this agent.

The frontend itself does not perform any measurements and should be released on another

node which is not monitored to avoid further interference with running applications. The

frontend reads at initialization the configuration files. The topology file, a file with the agent

tree layout and network information of each agent, is also read at the frontend such that no

other agent is required to read a file. The reading of a file in a file system from thousands

of processes trying to connect to the same device is not scalable. When the frontend reads

the configuration file it can also load the topology file. The hosts where each agent are to be

distributed can be configured in the topology file. This file is in XML format and contains

the parent-child relations of the agent network, additional information that will enable the

communication between agents (a port if a fixed port is needed), and an agent identification

number.

Once the topology file is read and the next layer of child-agents are spawned, the agent will

1Daemonized means that the process changes its unix session id in oder to be a child process from pid 1 (the

root process).
2The term frontend is used as described by Gerndt et al [39], and refers to the root agent of the agent tree.
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send the topology information of interest to a child agent and not the network information of

the entire agent tree. Thus, a child agent will only know its own sub-tree; in this way reducing

the memory needed at each agent. This is a process that repeats itself in a top-down fashion

such that every time the sub-tree is started and configured downwards the topology information

(parent-child relations) that is transmitted becomes smaller. Every agent has a registry of the

connection details (port, host, and tag) of all agents in their sub-tree. Thus, it is required that

agents at the top of the tree get enough memory space and should not reside in compute nodes

where running applications may need the available memory space.

The agent start up is also left out of the framework and can be tailored for each type of agent.

Agent start up is only performed by the SyncAgent (in both cases, when acting as a frontend

or when placed in the middle layers), and by the Collector Agents. The possibilities to place

an agent are varied. Examples are:

• Placement via an ssh command.

• Start up through the xinetd superserver [115].

While the first variant requires a configuration of environment variables at the moment of placing

the agent, the latter depends upon a system wide configuration at all nodes of the xinetd servers.

When job information is available on the node were the frontend is running, the interface

can be implemented to collect the job information at the SyncAgent since it has the capability

of transmitting this information. The job information is split and sent to the child agents. A

sub-tree of the agent hierarchy monitors only a subset of jobs. Thus, the splitting of the job

information is done by sending only the pertinent information which the sub-tree requires. The

receiving agent will only have the information of its sub-tree, such that the memory footprint

of all the agents is kept negligible.

The distribution of the properties from each job to the Collector agents is referred to as job

balancing : the amount of performance data from the monitored jobs that each Collector receives.

The load that reaches the Collectors is distributed evenly to avoid having a bottleneck in one

Collector. The implementation of the job balancing algorithm can be done at the frontend. It

is recommended to do so if job information is available at this point. If this is the case, the

SyncAgent calculates the route on the agent tree where the performance data of each job will

be sent. Details on how the job balancing is implemented and how this route is defined are

provided in Chapter 5.

Subsequent layers of SyncAgents send the synchronization commands and other information.

In such a case only some core functionality is used to achieve this tasks. When a SyncAgent

is placed in the middle layers and receives job information of the parent agent, it will split the

job information to send it to its child agents. Layers of synchronization agents which do not

act as frontend will have the cycle control inactivated as they only forward the commands of

the frontend.
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4.2.2 Collector Agent

The Collector Agent has as its main functionalities the propagation of the measuring command

and receive the incoming properties in order to aggregate them. At the beginning of the ex-

ecution, the Collector Agent receives the topology information of its sub-tree and spawns the

child agents that are under its control. No topology information of the agent tree is sent to the

leaves of the tree except the network information concerning the Collector that will receive the

properties. The Collector Agent forwards the measuring commands to the PerSyst Agents. In

the usual procedure, the PerSyst Agent will send the Properties as a response to the measuring

command to another Collector or to the parent Collector.

A top-down control of agents, by sending the command through the tree structure of the

agents, can be done just like other hierarchical tools. However, the collection of data from

the bottom-up was readjusted in order to try to avoid quantile estimation (see Chapter 5 on

quantile estimation) of subsets as opposed to quantile calculation to avoid further data quality

degradation. The Collectors receive, in most of the cases, the entire property information of

a job. If this is the case, they perform the aggregation and can perform the output according

to the chosen implementation. At the end of the measuring cycle the Collector processes the

properties to quantiles and averages them.

4.2.3 PerSyst Agent

The PerSyst Agent is the measuring agent at the compute nodes. They listen permanently at

a given port (dynamically set or a fixed configured port) for instructions from parent agents

before proceeding to measure their local nodes. When the measurement command is received,

the PerSyst Agent has a preparation phase prior to measurement. If the batch scheduler has

the job information available at the node, this information can be parsed at the level of the

PerSyst Agent on this preparation phase. Otherwise, the agents can be configured to pass the

job information and the PerSyst Agents receive the information during this phase in order to

avoid massive requests to a file system. This information includes the network information of

the recipient Collector who will receive the performance data.

The hardware events used by all properties are collected and passed to the measuring tool. The

measuring tool is implemented outside of the framework and performs the measurement of the

devices. Once the measurement is done, the Strategy will go through the tree of properties that

will perform the actual analysis. The properties which are candidates to be reported are then

sent to the recipient Collector.

The amount of information that the PerSyst Agent receives from the Collector Agent is

kept minimal to avoid using unnecessary memory space. The PerSyst Agent has, therefore, no

registry of the agent tree. In addition to the measuring strategy, the data sent by the Collector

Agent includes the communication information (the port and host) of the recipient Collector
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within the route information. The route can also specify whether the agent itself can aggregate

the properties and perform the output. If the PerSyst Agent has to send its data, it tries to send

it whithin the monitoring interval with a maximum of three trials to ensure that the message

arrives. After a cycle is completed, the PerSyst Agent will delete this information and await

the measurement command for the next timestamp. In the next cycle, the PerSyst Agent can

receive a different host and port to send the performance data. The only information kept is

the host and port of the parent. When a Collector has to be restarted because of failure, the

Collector information is sent to all the children agents; the Collector network information is the

only persisting information in a PerSyst Agent.

The measurement tools (such as LIKWID [113] and pfmon [3]) can be called from this agent

either by invoking the tool through a system call, or internally with a library call. When both

are available the choice is clear. Parsing the output data of a program invocation as opposed

to a library call is more expensive and time consuming.

The configuration of the severities and severity formulae can be done at the level of the Per-

Syst Agent by reading a file. However, this feature is only available for clusters where reading

a file from all the agents is not a problem and does not congest the entire system. For larger

clusters, like petaflop systems, this feature can be turned off at compile time. Alternatively,

for petaflop systems, the files can live locally at each compute node and no congestion is created.

4.3 Communication Interaction

The measurement commands of the agent system is orchestrated by a single frontend agent. The

commands are broadcasted downwards through the tree until the leaves (the PerSyst Agents)

are reached. The pairwise parent-to-child relationship is always kept for the transmission of

the measurement command as well as for configuring commands sent for the preparation of

an agent. A fundamental difference from other tools that gather data in the same way is the

bottom-up communication in the agent tree of the properties. The relationship of child to

parent is changed in order to gather the properties of one job centrally to one collector—when

possible. Unless the data load surpasses the collection capacity of a Collector, the performance

data of a job will be collected at only one Collector.

The agent communication consists of several commands that are processed by triggering a

determined action or simply receiving information. The commands from any parent agent to

any child agent are:

• CONFIGURATION: a command to configure an agent. This command is accompanied with

its corresponding transfer object. The object contains the configuration to initialize all the

agents. All agents react to this command, except the frontend, whose configuration is read

from a file. This command is sent only at start up and it may include configuration details

like running on test mode or production mode; it may contain a severity configuration file

to be read, a topology file, cycle times, and debugging features that may be turned on.
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• TOPOLOGY TRANS: a command that is accompanied with the sending of topological infor-

mation. This topological information contains the relations of the agent tree with network

information. This command is only used at the initialization of the agent network or to

recover from failure when the tree is rebuilt.

• TERMINATE: a command to terminate the agents. It is triggered by the frontend and sent

to all the processes using the network such that after broadcasting to the children agents

the process will terminate. The PerSyst Agent terminates by freeing its memory without

doing any other action prior to termination. This command is used to remove the entire

PerSyst Tool agents from the HPC system. A signal can be captured in the frontend agent

which will propagate termination to the tree network including itself and thus, it allows

for a scalable termination of the agent tree.

• HEARTBEAT: a command used by the heartbeat system in all agents, except the frontend,

to check if the process should continue running or not. If a heartbeat is transmitted the

receiving agent will renew its time-out to terminate so it will continue running. In case

the heartbeat is not received, the agent activates a shorter time-out used as a marginal

time. Within this marginal time the agent still waits for a belated sent message. At failure

of receiving such a message the agent will terminate. The heartbeat system enables the

termination of the entire agent tree when the frontend terminates due to failure.

• JOB DISTR: a command associated with a transfer data structure that contains the job

information and recipient Collector’s network information (port and host). The perfor-

mance data of a job is assigned a route that is communicated downwards to the leaves of

the tree. This object contains the route information: the network information of the first

receiving agent as well as the agent which centrally collects the entire job performance

data. Only the job information pertaining to the PerSyst Agents in the sub-tree of the

agent which will receive the job information are sent such that the message is broken into

smaller messages as it is transmitted down the network hierarchy. If the message is too

large it is split into manageable parts and sent in several messages.

• START MEASURING: a command that starts a measurement. It is propagated by the parent

agents to their child agents and is ultimately received by the PerSyst Agents. There is

an associated data transfer with this command which is the measuring timestamp and

the strategy identifier. The strategy identifier allows the tool to easily change strategies

from one measuring interval to another one. This feature has not been used, but was left

to allow extensions of the tool. The measurement is started right after this command is

received.

The command from the PerSyst agents to the Collector agents is GROUP PROPERTY TRANS:

a command associated for the PerSyst agent to forward the properties to a Collector. This

command is accompanied with a transfer data structure that contains the property data. The

properties are grouped with a message size that is controlled by the HPCSystem abstract class’s
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implementation (see Chapter 6 for more details on the HPCSystem abstract class). Once the

group reaches the desired number of properties to be sent, the group is sent by the framework

to an assigned Collector. The properties are bundled together (instead of single messages each

with one property) in order to optimize the transfer of properties.

The commands from any child agent to parent child agent are:

• REGISTER AGENT PORT: is a command associated with a transfer data structure that con-

tains the agent port. At start up, every child agent will dynamically select a port to listen

to and send a command with the corresponding transfer object to register its agent port

to the parent.

• REGISTER AGENT HOSTPORT and REGISTER MASTERHOSTPORT: are commands to register

network information. Alternatively to the previous command, the REGISTER AGENT HOST

PORT and the REGISTER MASTERHOSTPORT commands can be used when the ports are fixed.

This can be specified in the topology file. This variant is also used when an xinetd super

server is used to initialize the PerSyst Agent and/or a Collector Agent.

The communications commands between SyncAgents and Collector agents are:

• REQ QUANTILES TRANS: a command used for requesting the quantiles to the child agents.

This command will be transmitted until it reaches the Collectors. If the Collectors have

aggregated an entire job they will not pass any quantile information to their parent, instead

the command will trigger the implementation for the output of aggregated information.

• QUANTILE TRANS: the response command triggered by the REQ QUANTILES TRANS com-

mand. The response to the parent agent will be the corresponding transfer object that

has the aggregated quantile information.

• COLL INF: the command associated with a transfer data structure that contains the com-

munication addressing of the collector agents.

All of the agents are servers which are listening to commands and have the capability to

send and receive packets to each other using the predefined binary format of Common Data

Representation (CDR). This binary format is used to pack the data stream into small messages

that will be sent over the network tree. The binary serialization saves the data without any

markup or meta information. A custom format provides flexibility by providing insertion and

extraction operators for basic types. This representation is normally smaller than the equivalent

in XML representation resulting in a faster de-marshalling and serialization.

4.4 Cycles and Time Control

The measuring cycle is divided into two phases: a measuring and analysis phase and an idle

phase where the PerSyst Agents require almost no CPU utilization.

75



CHAPTER 4. FUNCTIONALITY OF THE PERSYST TOOL

Table 4.1: Times for cycle control

Total cycle time (TC) 600 seconds

Measuring and analysis phase 120 seconds

Idle Phase 480 seconds

Tool basic measurement time 10 seconds

In the measuring and analysis phase there is also enough time for the PerSyst Agents to send

the data. This phase is triggered by the frontend agent given that the frontend synchronizes

and controls all the other agents. Several third party tools require some initialization time and,

from experience, it was found that some measuring tools may crash. A slack time, to allow

retrial of measurements, is included in this phase. The basic unit of measurement for tools

which uses time is, therefore, considerably smaller than the measuring phase to allow for at

least repeating the measurement and sending the data over the network. However, the basic

unit of measurement is large enough to calculate the value per second (typically in the range of

1 to 20 seconds) of the measured metric before it is used for calculations by the properties.

The idle phase is used by the middle layers and the frontend for aggregation and collection

tasks. Typically, agents in the middle layers are not deployed in the compute nodes but on

other nodes such that the compute nodes are not loaded with monitoring computations. After

the post processing of the properties the agents use a fraction of the idle phase to store the data.

The storage means is implemented ad hoc for the system (see Chapter 6). Usually, buffering

into files is sufficient and scales well since the information per job is already aggregated. Also,

writing into the files is an action which is done at different times. Another task included in the

idle phase is the failure recovery. An example of cycle times is shown on Table 4.1.

The PerSyst Tool can be configured to a precision of seconds for the measuring cycle,

however, this is not recommended. Measuring every 10 minutes proved to be sufficient to

capture the performance over time of the running codes; doing it more often strengthens the

quality of the data but has as a downside that the PerSyst Agent needs to use the resources more

frequently. Any performance collection tool will have some impact on the overall performance;

doing the collection on a spaced interval of minutes makes this impact negligible.

The cycle administration is implemented as time-outs with the schedule timer facility in the

ACE library. Each time-out triggers the next phase to be communicated. From experience,

it is better to always start the cycle when the modulo operation evaluates to zero with the

Unix time stamp (time elapsed since 1rst of January, 1970). The reason behind this is that

some delays in raising the time-out alarm may happen and the next cycle can be adjusted.

Given that the delay to the next cycle time is known (it is determined by the modulo and the

Unix timestamp), the timeout can be adjusted. More over, the measurements are done at an

expected timestamp and are not dependent on the start up of the PerSyst Tool; so the time

that measurements are carried out can easily be calculated and other measurements outside
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PerSyst can be coordinated. If UT is the Unix Timestamp, the time to start (TS) at the very

beginning is defined as:

TS ≡ TC − UT (mod TC) (4.1)

Where TC is the total cycle time, see Table 4.1. Upcoming events will be corrected to this

cycle, if necessary, such that if a delay arises due to processing time the next scheduler is set

with less time.

4.5 Failure Recovery

Failure recovery is very important in continuously running daemons. In a tree structure design

of several layers of agents, a failure in a middle layer component implies a failure in the entire

sub-tree. In comparison to a non scalable structure of one centralized daemon which controls

the rest, this is a clear disadvantage. In such a structure, if a daemon dies, only the daemon’s

monitored resources would be lost. However, the necessity of scaling bounds the monitoring

tool to keep a tree structure with more than two layers of agents and thus, to have a recovery

mechanism which takes place immediately after a fault. The fault recovery has been designed

such that there is no interruption in the other PerSyst Tool components during the repair pro-

cess. At most, the information of a monitoring interval from the affected agents is lost.

There are several sanity checks built into the framework to ensure that all components are

running and are not faulty. Except for the frontend, the rest of the components are checked

with a system of heartbeats. A heartbeat flag is set when the system performs any type of

communication. This flag is checked at cyclical intervals. When no heartbeat was received (the

flag is false) and there is an expired time-out, the agent will set another shorter time-out. After

expiration of the second time-out the agent will terminate. The first time-out that was set is

synchronized with the cycle times; the second time-out is only waiting for a belated message

of the completed cycle. In case the message is received within the second time-out, the next

heartbeat is set such that it is synchronized again with the cycle times. Agents which have re-

leased other children agents control whether the children are still up and running with a similar

heartbeat registry system. The agents which are not responding are replaced by their parent

agent. A component failure will trigger the recovery mechanism on the next cycle.

There are several methods for the book keeping and reestablishment of missing communi-

cation links or agents. The available approaches [8, 59], however, do not adapt to the commu-

nication characteristics of how the performance data is collected with the PerSyst Tool. The

network information of the agents where this performance data is transmitted is contained in

the route (see Section 4.3). Thus, redirecting of the performance data traveling through this

route may result in having the performance data of a job being split, and having its output at

more than one agent. The job would then appeared duplicated or the record of the monitoring

data would be replaced by the latest agent (depending on the specific implementation). A sim-

ple approach has been taken, which recovers the missing link or agent after one timestamp: the

topology of the middle layers of the agent tree allows to be changed dynamically at the runtime
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of the PerSyst Tool. The parent agent of and agent which runs on a faulty node, can change

the host where the new sub-tree will be running. The PerSyst Agents belonging to the affected

sub-tree are then placed at each compute node, where they were originally assigned (except the

faulty nodes). Thanks to the heartbeat system the agents which don’t have a communication

link with the parent agent will eventually terminate. Only agents in the middle layers can be

reallocated: there is no sense on reallocating a PerSyst agent of a faulty node; the performance

data of the node will be lost.

The PerSyst Tool performs a check to detect error and faults in order to know when it

is necessary to terminate the agent. This includes the checking of a timestamp with the cur-

rent time. The PerSyst Agent makes a consistency check when it receives a timestamp, if the

received timestamp is outside a range of permitted slack different from the current time, the

PerSyst Agent will stop its reactor, make a logged output so the discrepancy is known, and

the daemonized task will terminate. This time range is defined as 90% of the measuring time

to give enough time for correction when the error log message is detected but still before the

completion of a measurement. A global cluster time setting is therefore required, however, it

is not necessary to have exact clock times. The parent Collector will eventually generate the

missing agent. It was found that a node having severe but unknown problems was presenting

anomalies, in such cases trying to perform measurements usually result, from experience, in

unusable data.

A faulty process may come from an external source, for instance using another tool for extract-

ing information. This can happen when using a blocking invocation to an external program

(e.g., via the popen function in C/C++), or an unforeseen failure within a library call. For

non-critical exceptions there are in-built time-outs to stop the faulty process. If there is enough

time, repeat trials are conducted. If the subsequent trial fails, the measurement for this cycle

may be lost but the next monitoring cycle will continue trying to perform the measurement.

The Collector agent will not process the partially received information from the faulty process.

Error logging is an integral part of any continuously running software. The monitoring tool

has a logging infrastructure which allows each agent to write errors and logging messages in

its own file. Logging must also be scalable. The solution to make logging scalable is to use a

representation system where only assigned agents are allowed to write log files. The amount

of logging has to be decided outside of the framework, i.e. the specific implementation for

an HPC system. Another alternative was considered which collects logging messages without

doing an output; the output is only done if an error occurs [5]. This solution was deemed to

be inappropriate due to three main reasons. Firstly, the crash can occur before any output is

printed. Secondly, given that the agents are constantly exchanging information the information

output in one agent may contribute to determine an error in another one. With a representation

system there is the possibility to keep these logging relations among the chosen agents. Finally,

if there is a generalized system problem that will reflect in error messages within the agents, the

agents will produce an amount of logging that will clog the system. A representation system
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has as a downside that not all anomalies will be captured. To alleviate this downside, a handful

of selected priority errors have been defined; these will be printed into the log files in any case.

The file destined for logging will not only contain the id, or tag of the logging agent but also

the timestamp when the agent was initialized. This proved to be useful to indicate that an

agent had crashed and restarted by only taking a look at the amount of log files. Of course, a

cleaning policy is needed to remove old log files from the logging directory.
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5
Statistical Aggregation of Performance Data

In this chapter a detailed description is given on how aggregation and collection of performance

data is performed in the context of a tree hierarchy (refer to Section 4.1 for more details on

the agent tree.). Section 5.1 surveys the use of descriptive statistics to be used for performance

data. Section 5.2 describes the method used to estimate percentiles. Section 5.3 describes the

algorithms to optimize the collection of data and to avoid quantile estimation as opposed to

quantile calculation.

5.1 Aggregation Using Quantiles

Monitoring of time series data implies the growth of data over time. Data is required for at least

the entire life-span of a supercomputer such that the development of one application can be

compared. This enables the observation of the evolution of a code with respect to performance

when run with different parameters, number of cores, and data input sets. A supercomputer

with 100,000 cores with, for example, 40 collectible metrics will generate 16MiB in one time

point. If metrics are collected once per second, the total data collected is approximately 1.4TB

per day. While tape storage provides a cheaper solution for storing such an amount of data

per day, a more expensive alternative, like disc storage, is required for a faster querying of jobs.

The volumes of data should be kept as small as possible to avoid such a steep growth of the

data. This can be achieved in two ways: firstly by reducing the frequency in the collection and

secondly by reducing the incremental amounts of collected data. This section deals with the

latter method.

The tool’s current approach stores only relevant aggregated information which has the ad-

vantage of reducing the volume of data not only for a permanent storage but also at collection

time. The aggregation of the data is a compromise between reduction in its quality and a more

cost-effective data storage with less disturbance at the monitoring time. The quality of the data

has to be good enough to detect applications with bottlenecks. The analysis and selection of

properties, done at the time of the measurement, will narrow down the studied population and

this, in turn, counteracts the reduction in the quality of data.
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Descriptive statistics offer a wide variety of methods to aggregate and present data. An

intuitive solution is to register the frequency of values into bins or classes; this allows the

depiction of the distribution with a histogram. Several drawbacks have been identified when

using histogram bins or classes. There are two possibilities, to define either fixed bins a priori,

or to use adaptive equidistant classes. The drawbacks for each possibility are:

1. Defining fixed bins before carrying out the measurement has two main disadvantages:

Firstly, the ranges are different for different variables, so each range for each variable

type has to be stored additionally with its corresponding frequency. For instance, if the

architecture is capable of doing four flops in one cycle, storing properties for the number

of cycles will have a different range than storing floating point operations. A normaliza-

tion of all values would complicate the comparison of two properties if the person using

this information does not have the architectural specifications in mind. Secondly, if the

observations reside in fewer classes than the ones available the quality of the descriptive

statistics is diminished. So using the entire possible range from a given population puts

at risk loosing the level of detail.

2. If adaptive equidistant classes that adapt to the observed minimum and maximum are

used, the aforementioned risk of reduced quality may be overcome if the population resides

close together. However, for every measurement, the newly computed classes must be

calculated and at least the minimum, and maximum must be stored along with all the

recorded frequencies for every measurment interval. Every time a query takes place the

bins need to be recalculated. Alternatively, every range the bin covers can be store along

with its frequency doubling the storage space of the database.

The need of synthesizing data efficiently has been resolved largely by storing a fixed amount

of quantiles. For practical purposes the definition and implications of using percentiles will be

used in this chapter, other subsets (for example quintiles, quartiles, or deciles) can be adapted

to the definitions and usage. The standard definition of the kth percentile Pk [34, 71] is the

value within the range of x, called xk, which divides the data set into two groups. The fraction

of the observation specified by the percentile falls below and its complement falls above xk.

Thus, it is necessary to obtain the cumulative frequency of the variate x, hereafter cdf (also

known as cumulative distribution function) to calculate any given percentile. To calculate the

kth percentile of a distribution, Pk, the value of xk which corresponds to the cdf of Nk
100 is taken,

where N is the sample size. When Nk
100 results to be a non integral, the linear interpolation of

the cdf between the value corresponding to the cdf, bNk
100c, and the next value corresponding to

the cdf, (bNk
100c+ 1), is calculated.

As an example of this definition, take the 20th percentile. This is a value x such that 20% of

the samples are smaller or equal to x.

Using equidistant percentiles makes it possible to describe the distribution of a population
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via feature reduction of the variate x. Seen from another perspective this is equivalent to calcu-

lating non-equidistant bins which have as a common criteria a fixed number of elements between

each percentile. The advantage is that the stored data becomes agnostic if it relates only to

a fixed number of percentiles that will always be stored rather than having to store the range

values for each data set. Percentiles adapt to their observed minimum, i.e. percentile zero, and

to their maximum, i.e. percentile one hundred, without risking the loss of the desired level of

detail.

At the moment of writing this document, resource managers and applications with the capa-

bility of varying the number of cores during runtime were not available for production, they

are only ongoing research [109]. In any case, by collecting the percentiles the data structures

should be capable of handling this situation.

The one drawback found with the usage of percentiles is that performing meta-aggregation

of percentiles is not always possible using the standard definition.

Definition Let Pa = {pai } with 0 ≤ i ≤ 100, i ∈ Z be the percentiles of a population A with size

Na and Pb =
{
pbj

}
with 0 ≤ j ≤ 100, j ∈ Z be the percentiles of a population B with size Nb,

then the meta-aggregation of the percentiles of Pa and Pb is the calculation of percentiles of the

population C where C = A ∪B. This definition can be applied to more than two populations.

The leaves of the tree topology calculate percentiles on their disjoint populations at the tree-

leaves. As soon as these percentiles move to the next layer of the network with fewer agents,

percentiles from percentiles are calculated. In the case of meta-aggregation of averages, the

calculations are exact when population sizes are known, but not in the case of percentiles.

This can be verified by finding at least one generic constellation where percentiles can’t be

calculated. Let A and B be populations whose only known information are their percentiles and

the population sizes, with PA = {pai } and 0 ≤ i ≤ 100, i ∈ Z being the percentiles for population

A, and Pb =
{
pbj

}
with 0 ≤ j ≤ 100, j ∈ Z the percentiles for population B, and with population

sizes Na and Nb respectively. Additionally, the following constellation pa0 < pb0 < pa1 < pb1 < pa2
holds. The information available to try to calculate Pc, the multiset of percentiles of C with

C = A ∪B, is Pa, Pb, and their population sizes Na and Nb.

Definition EX(pi, pj) is defined to be the number of elements between the percentiles pi and

pj , where 0 ≤ i ≤ j ≤ 100 and i, j ∈ Z for the cdf of X.

In order to try to find where pc1 lies both EC(pa0, p
a
1) and EC(pa0, p

b
1) are calculated.

EC(pa0, p
a
1) = Na/100 +Nb/100− x1 where x1 is an unknown number of elements.

EC(pa0, p
b
1) = Na/100 + Nb/100 + (Na/100 − x2) = 2Na/100 + Nb/100 − x2 where x2 is an

unknown number of elements.

For pa1 < pb2 to be true, then it must hold that 0 < x1 ≤ Nb/100 and for pb1 < pa2 to be true, then

it must hold that 0 < x2 ≤ Na/100. From this it follows that EC(pa0, p
a
1) < (Na + Nb)/100 ≤
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EC(pa0, p
b
1).

By definition, the percentile at k = 1, pc1 is the element at (Na +Nb)/100 of the cfd. Thus, the

value is pc1 has to be in pa1 < pc1 ≤ pb1 (given that EC(pa0, p
a
1) < EC(pa0, p

c
1) ≤ EC(pa0, p

b
1) ).

The only possibility that pc1 can be precisely calculated is that pc1 ∈ Pa ∪ Pb. For this to be

true, it should hold that x2 = Na/100 and pc1 = pb1, however, there is no information available

about x2 except that 0 < x2 ≤ Na/100, therefore pc1 can not be determined from the given

information.

This also applies to a subset of the percentiles (like deciles, quintiles, etc). Fortunately,

percentiles—as well as any percentiles subset—can be estimated in these cases.

A feature of monitoring systems with tree topologies is that they can be configured to per-

form meta-aggregations. If percentiles are used, estimations are required when an application

requires to use the entire tree, i.e. to apply meta-aggregation of percentiles. There are two

dimensions which can be aggregated given that an application runs over time with a fixed num-

ber of cores. In order to see the performance variations in time, only the number of cores per

timestamp are aggregated.

5.2 Percentile Estimation

In case percentile estimation is required the percentiles per Collector per Job are collected

within a SyncAgent. These percentiles are collected and estimated at each common parent of

the Collectors. The population of the properties from a Collector and a job are estimated [49].

For example, take

P1 =
{
p10, p

1
1, ..., p

1
100

}
(5.1)

as the percentiles from Collector 1 (C1) and

P2 =
{
p20, p

2
1, ..., p

2
100

}
(5.2)

as the percentiles from Collector 2 (C2). Both P1 and P2 belong to the same job such that the

new percentiles need to be estimated from both of them. Given that a distribution is not known

a priori, the entire set of observations from P1 and from P2 is estimated assuming a uniform

random distribution between the percentiles. As seen in Figure 5.1, a uniform distribution (not

randomized) assumes that the data between two deciles is uniformly increasing and curves in

the cdf are replaced with a line joining two deciles. While randomization is necessary for a small

number of elements, for a large number of elements the randomization will tend to reproduce

uniformity. Thus, no matter the amount of the elements that have to be recreated, they are

produced randomly.

The percentile values themselves do not need to be changed, they are part of the newly

recreated set, for example:

S1 =
{
p10, r

1
1, r

1
2, ..., p

1
1, r

1
n..., p

1
100

}
(5.3)
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(a) Real distribution with deciles shown.
(b) Estimation using uniform distribu-

tion between deciles.

Figure 5.1: Approximation of a population with uniform distribution

and

S2 =
{
p20, r

2
1, r

2
2, ..., p

2
1, r

2
n..., p

2
100

}
(5.4)

where r are the random values and S1 and S2 are the recreated sets. The new estimated set is

then S = S1∪S2. The random values are produced in such a way that they lie within the range

of two neighboring percentiles thus the value ri, lies between pk ≤ ri ≤ pk+1. The number of

random values R(k, k + 1) between two neighbouring percentiles, k and k + 1, where k ≥ 1 is

R(k, k + 1) =
No

np
− 1 (5.5)

where No is the total number of observations and np is the number of percentiles (example:

np = 100 when all percentiles are used, and np = 10 when only deciles are used). This formula

applies except for the first interval, given that the minimum (considered to be the percentile

zero) is in this range, there is one less random value to produce:

R(0, 1) = No/np − 2 (5.6)

Both sets S1 and S2 are grouped together and they form the estimated observations of the

collectors C1 ∪ C2. The cdf is calculated from S, the estimated population. The percentiles

are then determined from the estimated population. Analogously, this method can be applied

to more than two sets (i.e. percentiles coming from more than two Collectors). Once all the

estimated sets are joined together an estimated but complete population is obtained whose cdf

can be determined as well as its global percentiles.

Example Problem: Estimate a new set of deciles from Collector a and b given the following

data:

Da = {2, 40, 45, 60, 65, 67, 78, 90, 100, 113, 130} with a number of observations Na = 40, and

Db = {8, 29, 40, 65, 80, 87, 92, 97, 106, 112, 134} with a number of observations Nb = 20.
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Solution: To estimate the deciles from both Collector a and b, the first step is to recreate

their populations Sa and Sb.

To recreate Sa the required amount of random numbers must be produced between each decile.

The amount of random numbers between d0 and d1 is calculated with Formula 5.6.

Ra(0, 1) = Na/10− 2 = 2

The required amount of random numbers between any other pair of deciles dk and dk+1, where

k ≥ 1, is calculated with Formula 5.5:

Rb(k, k + 1) = Nb/10− 1 = 3

Thus, the recreated set will have the elements:

Sa = { 2, ra1 , r
a
2 , 40, ra3 , r

a
4 , r

a
5 , 45, ra6 , r

a
7 , r

a
8 , 60, . . . , 113, ra27, r

a
28, r

a
29, 130 }

with d0 ≤ ra1 ,ra2 ≤ d1; d1 ≤ ra3 , ra4 , ra5 ≤ d2; and so on.

Similarly, Sb is recreated by calculating the required amount of random numbers and generating

the cdf. The amount of random numbers between d0 and d1 is calculated with Formula 5.6:

Rb(0, 1) = Nb/10− 2 = 0

ie. no random numbers between d0 and d1 are needed.

Between any other pair of deciles k, k + 1, where k ≥ 1, the number of generated random

numbers is:

Rb(k, k + 1) = Nb/10− 1 = 1

Thus the recreated set will have the elements:

Sb = { 8, 29, rb1, 40, rb2, 65, . . . , 106, rb9, 130 }
with d1 ≤ rb1 ≤ d2; d2 ≤ rb2 ≤ d3; and so on.

All random numbers are created within their ranges with a uniform random distribution.

Having calculated Sa and Sb the complete estimated population S can be calculated (Sa ∪Sb) :

S = { 2, ra1 , r
a
2 , 40, ra3 , r

a
4 , r

a
5 , 45, ra6 , r7

a, ra8 , 60, . . . , 113, ra27, r
a
28, r

a
29, 130, 8, 29, rb1, 40, rb2, 65,

. . . , 106, rb9, 130 } from which the deciles can be estimated.

5.3 Data Collection

The data collection starts at the source, i.e. the PerSyst Agent. The agent obtains the raw

measured information of the complete compute node and stores it internally for processing and

analysis in properties. Then, it will either send the properties upward in the agent tree or it will

write the final results into the assigned database or file system. The response of the PerSyst

agents is not necessarily directed to their Collector parent [44]. The responses can be remapped

so that the properties of a job can be collected centrally, avoiding percentile estimation (the

top-down control of agents was kept, by sending the command through the tree structure of

the agents, just like other hierarchical tools). This mapping of the properties of the jobs to

collectors is determined at the SyncAgent which acts as the frontend. A balancing of jobs is

86



5.3. DATA COLLECTION

made in which the load of the PerSyst agents is assigned to Collectors for data collection, as

described in Algorithm 1. The three basic ideas of this algorithm are:

1. Allocate the properties of the biggest jobs first (by sorting the jobs by their load).

2. Find the Collectors with minimum assigned load (by sorting the Collectors by load).

3. From all these Collectors assign the collection to the Collectors with the closest tree

distance to the PerSyst Agents.

Algorithm 1 Algorithm to distribute job’s properties to collectors.

Require: ⌈∑
J lj

lmax

⌉
≤ |C| (5.7)

Where C is the set of collectors and lj is the load from job j and J is the set of all jobs at

a measurement interval. lmax is the maximum load a Collector can take.

1: COMMENT: A job j is running on different nodes monitored by the set of agents Aj .

2: COMMENT: Initialize the load in all collectors in C:

3: for all lc do

4: lc ← 0

5: end for

6: SORT jobs J in descending order of load lj

7: COMMENT: Assign loads from jobs to collectors:

8: for all j ∈ J do

9: if |Aj | = 1 then

10: MARK j to be processed directly at a ∈ Aj

11: else

12: DistributeLoadOnCollectors(C, lj , Aj)

13: end if

14: end for

When the job size fits exactly in one compute node, the job is processed locally and stored

from this compute node. If the system runs entirely on one-node sized jobs, the multiple accesses

to the storage device can create a bottleneck. Thus, if these requests are exceeding the limits

imposed by the storage medium, these one-node jobs are sent through the network tree (for

clarity, this sanity check and the corresponging action are not shown in Algorithm 1).

lj and lmax are called loads and the terms represent the amount of properties of a job lj

or the maximum amount of properties a Collector can take lmax. Given that the balancing of

jobs algorithm is done before the measurement of the jobs, the total amount of properties are

not known, so it is assumed that the maximum amount of properties will be transmitted. The

algorithm can be implemented such that the loads represent the properties of a node or another

domain which may be more convenient (core, hyperthread).
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Algorithm 2 shows how the assignment of properties to the Collectors is performed. The idea

is to use the tree structure only when it is needed, otherwise to aggregate with exact calculations

and store information as quickly and as closest to the source as possible. It has four main steps.

Firstly, the number of collectors needed(nc) for one job is determined. Secondly, the most

suitable Collectors are found with the FindBestCollector Algorithm. Thirdly, the loads of

child agents of these Collectors which also belong to the job (if any) are assigned. Finally, the

rest of the load of the job is assigned.

Note that the placement of the rest of the load (Lines 22 to 25 in Algorithm 2) allow for a

load greater than lmax for a Collector. In practice, one-node jobs are processed at the PerSyst

Agent leaving Collectors with more room to take load up to lmax. In theory, the algorithm

requires a check in Lines 22 to 25 that compares the load in the Collectors against lmax. If

this load is surpassed, another Collector from the set of collectors C∗ can be acquired with the

FindBestCollector algorithm. However, the downside to this variant is that the properties

of these jobs will be distributed over more Collectors and the percentile estimation is needed.

Alternatively, the mix of job sizes (load) should be taken into account to choose a higher number

of Collectors suitable for distributing the load.

Definition The tree distance of two tree nodes (leaves or nodes) has been defined to be the

longest distance in terms of edges joining the nodes where the data is transmitted, such that

this data is collected centrally at the root of the smallest sub-tree which contains the two tree

nodes.

Figure 5.2 shows examples of how the tree distance is calculated. The tree distance between

node 13 and node 15 is two, given that the data has to be transmitted through two edges at

most to reach the destination node. The tree distance between node 12 and node 15 is one, and

the tree distance between node 15 and node 30 is three.

Figure 5.2: Examples of the tree distances between nodes

Algorithm 3, FindBestCollector, finds the Collector with the minimum assigned load (lc

in Algorithm 1). When minima are found the algorithm considers also the tree distance of a
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Algorithm 2 Algorithm to distribute performance data load to several collectors.

1: Algorithm DistributeLoadOnCollectors(C,lj , Aj)

2:

nc ←
⌈
lj
lmax

⌉
(5.8)

3: COMMENT: nc is the number of Collectors that will receive the load from all agents Aj .

4: iter ← 0

5: A′j ← Aj COMMENT: A′j is a temporary variable for agents of a job.

6: C∗ ← C COMMENT: C∗ is a temporary variable for all the collectors.

7: while iter < nc do

8: c← FindBestCollector(C∗, A′j)

9: INSERT c in C ′

10: REMOVE c from C∗

11: COMMENT: Removing c from C∗ avoids having the same Collector in the next iteration.

12: COMMENT: Allocate load of child agents of c (Ac
j) in lc until lmax is reached:

13: for all a ∈ Ac
j do

14: if lc + la ≤ lmax then

15: lc ← la + lc

16: REMOVE agent a from A′j
17: end if

18: end for

19: iter ← iter + 1

20: end while

21: COMMENT: Place the rest of the load on the first nc Collectors found:

22: for all a ∈ A′j do

23: c← FindBestCollector(C ′, Aj)

24: lc ← la

25: end for

Collector and a PerSyst Agent so the properties will be sent to their closest Collector. Note

that the algorithm always works with the original configuration of the tree agent.

The closest Collector to a job is defined as the Collector with the minimum total distance

of itself to all the PerSyst Agent nodes where the job is running.

dCmin = min
k

(
N∑
i=0

dik) (5.9)

where dik is the tree distance between i (ith PerSyst Agent) and k (kth Collector Agent) for all

the N PerSyst Agents that are measuring a job, and Cmin is the Collector with the smallest tree

distance (dCmin). By performing such a distribution, the algorithm guarantees that the normal

parent-child relations are used as much as possible. This avoids sending additional Collector

information to the PerSyst Agents more than necessary.
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Algorithm 3 Algorithm to find Collector with minimum load and minimum tree distance.

1: Algorithm FindBestCollector(C, A)

2: COMMENT: Returns Collector with minimum load and minimum tree distance given the

set of Agents A.

3: C ′ ← all c with minimum load. COMMENT: C ′ = {c ∈ C|lc = lmin}
4: if |C ′| > 1 then

5: for all c ∈ C ′ do

6: dc ← 0 COMMENT dc is the accumulated tree distance from c to all a ∈ A.

7: for all a ∈ A do

8: dc ← dc+ TreeDistance(c, a)

9: end for

10: end for

11: SEARCH for c the Collector with min(dc)

12: COMMENT: c is the collector with minimum distance. If |min(dc)| > 1, i.e. more than

one Collector, only the first one is returned.

13: RETURN c

14: else

15: COMMENT: c ∈ C ′ with minimum load.

16: RETURN c

17: end if

The algorithm that calculates the tree distance is not shown but has a time complexity of

O (log(n)) as it reduces to a tree search. The complexity of Algorithm 1, including the other

calls, is therefore O
(
n2log(n)

)
where n is the number of the measuring agents.

For jobs where lj ≤ lmax, the maximum load a Collector can take, it is only necessary

to use one Collector and not the entire tree structure for extracting and collecting data. For

convenience these jobs will be defined as medium sized jobs, i.e. jobs whose load lj ≤ lmax.

When lj > lmax the job size is handled with quantile estimation and use the tree partially to fit

the collection in the lowest possible number of collectors to extract the information, these jobs

are called for convenience big jobs.

The last remaining task is to calculate the common collection node for the big jobs among

the SyncAgents of an entire job. The original parent-child relations of SyncAgents to Collectors

and among Collectors are used to propagate the property data. Only the PerSyst Agents may

transmit property data to other Collectors different from their parent Collector. Thus, the

SyncAgent responsible for big jobs can be determined with tree operations. Once the loads are

assigned and the final destination is defined (PerSyst Agent, Collector, or SyncAgent). The

route of the properties for each job is defined (See the JOB DISTR command in Section 4.3) and

propagated downwards to the tree, via the original tree topology. The measurement, analysis,

and retrieval of properties via the assigned routes takes place. An example of the retrieval of
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properties is shown in Figure 5.3. One-node jobs finish their collection at the PerSyst agent in

charge of monitoring its node without requiring percentile estimations.

The second location is to collect the properties at the Collector level. A medium sized job

running in more than one node will be centrally sent to one Collector, thus, the Collector can

perform the precise calculation of percentiles without using estimations. This is the case for

Jobs 1, 2, and 3 in Figure 5.3 which are processed in Collector Agent 1, 2, and 3 respectively.

The third location is at a SyncAgent. The properties from big jobs require more than one

Collector and, thus, part of the tree topology to extract the data. Unfortunately, the estimation

of percentiles can not be avoided when using a SyncAgent to aggregate. By using aggregation

the communication is reduced as the data propagates to the tree top. A job which runs on the

entire machine requires that the final collection of properties takes place at the frontend.

Figure 5.3: Example of retrieval of Properties

The storage of results in the file system or a database is distributed over time. Firstly,

one-node jobs are stored; directly after the analysis step. Secondly, medium sized jobs are ag-

gregated and stored by the Collector. Of course parallel storage takes place among the active

Collectors. Finally, the layers of SyncAgents will store their job information (these are the big

jobs).

The output of all the agents (to a parallel file system, or directly into the database, or other

devices) is already aggregated. The bigger the job is, the higher the percentage of data reduc-

tion. Take as an example the usage of deciles: only ten quantifiers and the minimum, amounts

to eleven data points per job that have to be stored. For a job with 4096 Cores, more than 99%

data reduction is done. Thus, the final aggregated information which would be written on the

parallel file system or inserted directly into a database is not a bottleneck itself.
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6
Portability and Adaptability

In this chapter, the description of how the portability and adaptability of the PerSyst Tool is

described. The software architecture of the tool and of each agent is discussed in the following

section. The software engineering of the communication is described Section 6.2.

6.1 Framework and Abstract Classes

The software was designed as a framework to allow for portability and adaptability of the

PerSyst Tool. The communication is handled within the framework and the communication

commands activate via callback the specific implementations.

All of the system components, i.e. the SyncAgent, the Collector Agent, and the PerSyst Agent,

have an interface which can be used with a tailored implementation.

The framework of the PerSyst Agent triggers the measurement command, enables the evalu-

ation of the strategies (which in turn evaluates the properties), and passes the properties for

communication to the Collectors. Several factors made it necessary to allow for specific im-

plementations for the monitoring tasks. At the level of the PerSyst Agent, the strategies and

the properties are architecture dependent. The set of measuring tools can be different among

supercomputing systems and there are other tasks related to the measurement tool’s function-

ality which depend on the HPC system’s architecture or software. Decoupling is done with

the use of four main abstract classes—the Property, the Strategy, the MeasurementTool, and

the HPCSystem—to have a distinct encapsulation for the specific operating system, processor

architecture, and available tools for measurement. Figure 6.1 shows the interaction among the

interfaces. The HPCSystem interface allows the Tool to measure the raw data and pass it to the

Strategy. The Strategy evaluates the Property and the Property is passed to the commu-

nication layer to be sent through the network.

There are two additional abstract classes: one at the level of the Collector Agent and the

other at the level of the SyncAgent. They also enable the implementation of tasks related to the

tool’s functionality which depend on the HPC system’s architecture or software. The interfaces

of the tool are further described below. In the following sections the JobID refers to a unique

job number which is provided by the batch systems.
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Figure 6.1: PerSyst Agent Framework
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6.1.1 MeasurementTool

The MeasurementTool abstract class allows for the ad hoc implementation of tool which mea-

sures the raw hardware counters or other raw monitoring data. This abstract class, shown in

Listing 6.1, is used at the PerSyst Agent. The MeasurementTool abstract class leverages third-

party tools or APIs with systemwide1 measurement capabilities. An invocation of an external

tool via a system call can be done in the delegated class of the MeasurementTool interface.

Other possibilities include parsing system files or library calls to an API that performs the

measurements. The only requisite is that the implementation of the measure method, see line

5 of the MeasurementTool interface, inserts the event counters which correspond to each device

id into the internal database of the PerSyst Agent. The device refers to the measured hardware

domain. For instance: a given core, a hardware thread, or a compute node. Every device is

given an id in order to handle the measurements in an internal database (PerformanceDataBase

object is Line 5).

Listing 6.1: Abstract Class Tool

1 class MeasurementTool {
public :

MeasurementTool ( ) ;

virtual ˜MeasurementTool ( ) ;

5 virtual int measure ( PerformanceDataBase &inOutPdb ,

int endTime , int basicUnitTime )=0;

virtual bool fo rkTool ()=0;

} ;

In the specific implementation it is determined whether a fork for the tool is necessary

(with process forking). Forking can be controlled by returning true in the forkTool method

(line 7), then the framework will create (via a system call) a copy of the current process (as a

child process); otherwise the measurement and the strategy will be evaluated sequentially. The

forked child process is independent and can be internally parallelized with threads in case the

measurement takes too long and a speed-up is required. Even if the PerSyst Agent is forked,

the unix operating system will optimize the usage of the new child process which has been

forked by avoiding the duplication of constant values from the process. Figure 6.2 shows the

forking of three tools and one of the tools is parallelized using threads. The first three parallel

processes represent a forked process for each measuring tool (tool 1, tool 2, and tool 3), while a

tool itself may be further parallelized with the usage of threads (these are in Figure 6.2 thread

1 and thread 2; both threads from tool 1).

6.1.2 Property

The classes that derive from the Property abstract class hold the implementation of formulae

and thresholds to calculate the property value and severity. This abstract class is used at the

1Systemwide measurement in this context refers to being able to measure a shared memory node within one

process.
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Figure 6.2: Tool parallelization within PerSyst Agent.

PerSyst Agent. Section 3 has detailed information on the Property abstract class. The metrics

used in the Property will be passed to the Tool interface for measurement. The Property

has a property evaluation method which is used to calculate the property value based on the

hardware counters or other raw monitored data (where the analysis is done) with a threshold

and a severity. The implementation of each Property defines the unique property id.

To avoid object generation, a class which inherits from Property is instantiated only once and

evaluated against all device ids. The property data to be communicated is grouped into property

transfer groups in order to optimize the communication. Instead of sending one message per

Property, these are bundled together to minimize the number of messages.

6.1.3 Strategy

The classes derived from the Strategy abstract class hold the properties in tailored tree-like

structures of properties, with each tree having a root property. This abstract class, used at the

PerSyst Agent, is shown in Listing 6.2. More than one tree node is allowed in the Strategy; they

can be specified as an array of root properties as shown in line 10. The strategy trees are used

to refine from general properties to more specific ones when the general properties indicate a

poor performance. The strategy tree itself can be specified by defining parent to child relations,

as shown in the member variable in line 9. Each strategy may vary according to the underlying

micro-architecture and the used properties. Virtual functions which are not pure have a default

implementation that will be used if they are not overwritten. These include refining the trees,

retrieving all metrics from the strategy tree, and calculating properties through the strategy

trees (Lines 13 through 18 and Line 23).

Listing 6.2: Abstract Class Strategy

class Strategy {
public :

S t rategy ( ) ;

4 virtual ˜ Strategy ( ) ;
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virtual void getAl lMetr ics InGroup ( int group ,

set<s t r i ng> & metr i c s ) ;

8 protected :

map<Property ∗ , vector<Property∗> > parentChildMap ;

vector<Property∗> r o o t P r o p e r t i e s ;

int numberOfMeasurementGroups ;

12

virtual void getMetricsFromTree ( Property ∗ node ,

set<s t r i ng> &metr i c s ) ;

virtual void getMetricsFromProperty ( Property ∗ prop ,

16 set<s t r i ng> &metr i c s ) ;

virtual void ca l c u l a t eProp e r ty ( PerSystAgent ∗ agent ,

PerformanceDataBase &hwcdata , int dev id , Property ∗ prop ) ;

20 public :

virtual s t r i n g getStrategyName ()=0;

virtual void ge tA l lMet r i c s ( set<s t r i ng> & metr i c s ) ;

virtual void c a l c u l a t e P r o p e r t i e s ( PerSystAgent ∗ agent ,

24 PerformanceDataBase &hwcdata , int dev id ) ;

} ;

6.1.4 HPCSystem

The HPCSystem abstract class provides a means to delegate tasks unique to the underlying

HPC system. This abstract class, shown in Listing 6.3, is used by the PerSyst Agent. It

typically implements parsers to information needed for measurement activities. The software

design decouples the main functions for monitoring from the underlying specific implementation

required. However, it is unavoidable to have constraints. An assumption has been made, for

example, that the location of information sources is available either at the compute nodes or at

the frontend. Usually, this is the case as requests to a batch scheduler allows for the attainment

of this information anywhere on a supercomputer. If the source of this information is located

at the frontend, the information can be broadcasted until it reaches the PerSyst Agents at each

measuring timestamp. The framework has restrictions in time and location regarding the sources

of information; which still allows a variety of ad hoc implementations. These restrictions are a

compromise between having a lightweight tool with enough options to be adapted to clusters

with similar characteristics or having a tool which can fully adapt to any cluster but is no longer

lightweight. The Strategy which defines the property tree, can access the metrics which will

be measured. The HPCSystem abstract class can pass these metrics to the MeasurementTool.

Implementations which can be adapted are:

• The constants which are specific to an HPC system. For example: the maximal size of the

number of properties per transfer such that the amount sent is optimized for the system
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architecture (Line 14).

• The reading of the underlying hardware topology. The term hardware topology refers

to the layout of sockets, cores, and hardware threads, as well as uncore devices. Uncore

devices refer to the shared domain among cores within the processor.

• Strategies and Measurement tools used (Line 11).

• The properties and strategies themselves which are not generic to an architecture. This

is due to the specific hardware counters and monitoring units of each architecture.

• The format of the information that relates a job with where it runs. This includes the

codification of the CPU identifier (Line 13).

• The source of the job information. The performance data is correlated to the job and this

information can be requested in the compute node (directly through the batch scheduler

or via the local virtual file system) or it can be transmitted via the network for every

measurement (Line 16). The job information can be reset at each measurement (Line 17).

• Preparation activities for a next measurement (Line 18). For example: cleaning files.

• The communication details of the recipient agent (Line 21).

• The data structure of the information coming from the batch scheduler/resource manager.

Listing 6.3: Abstract Class HPCSystem

class HPCSystem {
2 protected :

PerSystDirs ∗ perSystDi r s ;

public :

HPCSystem ( ) ;

6 virtual ˜HPCSystem ( ) ;

void s e tPerSys tDi r s ( PerSystDirs ∗ perSystDi r s ) ;

virtual void s t o r e R e s u l t s ( int agentTag ,

map<JobID , JobIDResult∗> & propResults ,

10 int measurementTimeStamp )=0;

virtual map<Strategy ∗ , MeasurementTool ∗> g e t S t r a t e g i e s (

int f o rkS t ra t egy )=0;

virtual int getCPUKey( int tag , int cpu )=0;

14 virtual int getNumberOfPropert iesPerTransfer ()=0;

virtual int getCodedTagFromHost ()=0;

virtual void i n s e r t J o b I n f o ( JobRouteTrans &t o i n s e r t )=0;

virtual void resetForNextMeasurement ()=0;

18 virtual void prepareMeasurement (map<int , s t r i ng> &devid2jobID ,

map<int , pa ir<int , int> > &devIdRoute ,

bool &measurementOff )=0;

virtual CommAgent& getAgentToSendTo ( s t r i n g &job id )=0;
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22 virtual void k i l lOtherAgent s ()=0;

virtual void changeDebugLevel ()=0;

} ;

6.1.5 HPCSystemCollector

The HPCSystemCollector is an abstract class used by the Collector to delegate methods which

are specific to the node where the collector is running. The Collector has a lighter framework

architecture compared to the framework of the PerSyst agent as it already handles properties as

C structs with only one struct type definition2. This struct for properties includes the property

id, property value, and severity. Structs are preferred over classes as an optimization in order

to avoid the creation of C++ object virtual tables. Specific implementations include:

• Implementing the agent placement differently, see Listing 6.4 at Line 5.

• Making an output to a database or file system, see Line 8.

• Checking whether a node is not in operation, see Line 7. This method requires interaction

with the batch scheduler.

• Implementing any cyclic actions additional to performance monitoring, see Line 12.

• Sending a signal to another agent so the agent terminates execution, see Line 13.

Listing 6.4: Abstract Class HPCSystemCollector

class HPCSystemCollector {
public :

HPCSystemCollector ( ) ;

4 virtual ˜HPCSystemCollector ( ) ;

virtual bool r e l ea seAgent (Node ∗ c h i l d i n f o ,

Node &own info , int t imetowait )=0;

virtual bool nodeisDown ( s t r i n g node )=0;

8 virtual void s t o r e R e s u l t s ( int agentTag ,

map<JobID , JobIDResult∗> &propResults ,

int measurementTimeStamp )=0;

void s e t P e r s y s t D i r s ( PerSystDirs ∗ p e r s y s t d i r s ) ;

12 virtual void timeToMeasureAction ()=0;

virtual void k i l lOtherAgent s ()=0;

virtual void changeDebugLevel ( int tag )=0;

16 protected :

PerSystDirs ∗ perSystDir ;

} ;

2As described in the Property abstract class, each property is codified using a class which inherits from the

Property abstract class.
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6.1.6 HPCSystemSync

The HPCSystemSync is an abstract class used by the SyncAgent to delegate methods which are

specific to the node where the SyncAgent is running. The SyncAgent has a lighter framework ar-

chitecture compared to the framework of the PerSyst Agent. It defines only the HPCSystemSync

abstract class shown in Listing 6.5. Similar to the HPCSystem abstract class, this interface pro-

vides a means, at the level of the SyncAgent, to call tailored implementations and tasks unique

to the underlying HPC System. Specific implementations include:

• Implementing output methods to store the data in a database or in a file system, see

Line 7 of Listing 6.5.

• Implementing agent placement, see Line 5. If the child agent has been reallocated to a

new host, the new possible host can be codified in the specific implementation of this

method.

• Implementing any cyclic actions additional to performance monitoring, see Line 10.

Listing 6.5: Abstract Class HPCSystemSync

class HPCSystemSync {
2 public :

HPCSystemSync ( ) ;

virtual ˜HPCSystemSync ( ) ;

virtual bool s tartAgent (Node ∗ ch i ld , AgentArgs & agentargs ,

6 int t imetowait )=0;

virtual void s t o r e R e s u l t s ( Quant i leEst imator &prope r t i e s ,

Quant i leEst imator &s e v e r i t i e s , map<s t r i ng , int> &jobsToFinalDest ,

set<int> &propids , Node ∗ myNode , int measurementTimeStamp )=0;

10 virtual void timetoMeasureAction (

map<int , vector<JobRouteTrans ∗> > & t r a n s f e r s )=0;

virtual void i n i t i a l i z e ()=0;

void s e tPerSys tDi r s ( PerSyst Dird ∗ perSystDir ) ;

14 protected :

PerSyst Dird ∗ perSystDir ;

} ;

6.2 Communication

The socket based communication is implemented using the ACE (Adaptive Communication

Environment) framework [96,99]. ACE is an object oriented framework designed to simplify the

programming of interprocess communication, threading, and memory management [56,98,100].

It also serves as an API to general operating system services. The ACE software is designed to

be extensible and avoids falling into common pitfalls when dealing with low-level communication

libraries. All these qualities make it highly portable and ideal for new software development.
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The PerSyst Tool framework uses, in all the agents, the Reactor [97] implementation of the ACE

library. The Reactor allows concurrent requests to be handled by an agent. The service requests

involve not only communication from other agents but also handling signals and time outs. The

Reactor is responsible for taking these requests and dispatching the appropriate services.
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7
Context of Evaluation and Results

The validation, results, and performance measurements of the PerSyst Tool for the architectures

Westmere-EX and Sandy Bridge-EP are provided in this chapter. These are provided for three

large HPC architectures: HLRB-II, SuperMIG, and SuperMUC. SuperMUC is the largest and

has the most recent architectures of the three systems. Thus, the bulk of the results is provided

for the largest system, SuperMUC, where the tool was deployed. The three systems (the context

of evaluation) are described in the following section. On the rest of this chapter only the

references to the environment which was used is given at each validation or experiment.

7.1 Context of Evaluation

The evaluation of the PerSyst Tool has been done in three different systems, each with a different

architecture. The performance validation has been conducted in SuperMIG (Westmere-EX

architecture) and SuperMUC (Sandy Bridge-EP architecture). Both systems were integrated

into a larger system with one batch scheduler running for both of them. The three systems are:

HLRB-II: The SGI Altix 4700 teraflop system1 was the first supercomputer where the Per-

Syst Tool was deployed. The HLRB-II had 9,728 Intel Itanium 2 processors (Montecito Dual

Core) divided into 19 nodes (called partitions). The partitions were shared among users and

had a large shared memory. This machine was connected to a NAS file parallel system. The

PBS batch scheduler [118] was managing the resources and the queuing system.

SuperMIG/fat nodes: The Intel’s ’The Intelligent Cluster’ based on IBM BladeCenter HX5

was used for the second deployment of the tool. This system has Westmere-EX (Xeon E7-4870)

processors with 8,200 cores in total divided into 205 nodes, ie. 40 cores per node. All the

nodes comprise one island. The batch scheduler which distributes the jobs on this system is the

LoadLeveler from IBM and is configured to allow users a dedicated use of the compute nodes,

thus, a compute node can’t be shared. There are four job classes2; each allowing submissions

1This machine was retired from operation.
2The batch scheduler schedules jobs according to the job class which in turn depends on the job size. A job

class allows a range of job sizes which are typically sent to the a sector of the system (for example: two islands

are dedicated to the job class “small”.)
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with a different range of job sizes.

SuperMUC/thin nodes: The IBM X Series Cluster system, SuperMUC, is based on Intel

Sandy Bridge-EP (Xeon E5-2680) and Mellanox FDR-10 Infiniband technology. SuperMUC

comprises 18 thin-node Islands with 516 nodes each (8256 cores in total in one island). Each

node has 2 Sandy Bridge-EP Intel Xeon E5-2680 processors (also known as packages), with a

total of 16 cores per node (a Sandy Bridge-EP package has 8 cores). Each individual island

is connected internally via a FDR10 fully non-blocking infiniband network. Among islands,

the high speed interconnect enables a bi-directional bi-section bandwidth ratio of 4:1 (pruned

network). SuperMUC has, thus, 9,216 nodes with a total of 148,608 cores in the thin island.

The batch scheduler is configured to allow users to use one compute node for a job, thus, a

compute node can’t be shared.

Integration of SuperMIG into SuperMUC: Both systems were integrated and have a

common batch scheduler and interconnect network. There are eight job classes; each allowing

submissions with a different range of job sizes for the Westmere-EX nodes (also known as fat-

nodes) and for the Sandy Bridge-EP nodes (also known as thin-nodes). The batch scheduler is

configured to allow the users to use one compute node for a job. Simultaneous Multithreading

(SMT) is activated and users are encouraged to use only one hardware thread per core to run

their applications which leaves the second hardware thread for administrative tasks (such as

those performed by the OS, the batch scheduler, and monitoring tools).

The IBM General Parallel File System (GPFS) which is connected to both the thin-node

and the fat-node islands, has 10 PB of capacity and an aggregated throughput of 200 GB/s.

Disk storage subsystems built by DDN were configured for a striping factor of 8 MiB, which is

the amount of data written onto each disk before moving to the next disk. The striping block

can be split into sub-blocks which are 1/32 of the striping factor; this is the smallest allocation

to a single file [73].

7.2 Portability

The PerSyst Tool has been ported to three systems. A more detailed description of the porting

of the tool is given for the SuperMUC system where most of this work focuses on.

The tool was initially deployed in HLRB-II with one Collector (which did the synchronization)

and 19 PerSyst Agents, one at each partition (equivalent to a node). In this system, the tool

was interfacing with the pfmon [3] tool from HP which was parallelized with four threads in

order to read the performance metrics. Other tools used were SAR [33], and top [46], both from

the Linux OS.

Secondly, the deployment on SuperMIG was achieved with one SyncAgent, 9 Collectors, and

205 PerSyst Agents. In this machine, the tool interfaced with: LIKWID for the performance

measurements; the loadleveler from IBM; the SAR; and the /proc virtual file system from the
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Linux OS.

Finally, the tool was ported to the SuperMUC petaflop system with one SyncAgent as frontend,

12 SyncAgents in the middle layer, 216 Collectors, and 9216 PerSyst Agents (one at each

compute node). In this machine, the tool interfaced with: LIKWID, the loadleveler from IBM,

the SAR and the /proc virtual file system from the Linux OS, the mmpmon [51] tool from the

GPFS, and the perfquery tool [92].

The PerSyst Tool runs currently in production mode in SuperMUC; thin and fat nodes now

comprising one large supercomputer system. The tool was configured to run as one instance

(one tree of agents with one frontend) on both parts of the system and measuring two different

architectures (two different types of PerSyst agents; one at each type of architecture).

Table 7.1 shows the measuring tools used in SuperMUC.

Tool Monitored Events

LIKWID Hardware Events

mmpmon I/O GPFS Events

perfquery Network Events

/proc/meminfo Memory Usage

SAR System Activity Report Events

Table 7.1: Measuring tools used

The tools in the fat nodes used are the same as with SuperMUC/thin-nodes (mmpmon and

perfquery). The mmpmon [51] tool is provided by the GPFS to read certain events, including

read and write bandwidth, number of read and write operations, and operations requesting

metadata. The infiniband interconnect provides event measurements via the perfquery [92]

tool. It provides transmitted/received data and number of transmitted/received packets.

Regarding the experience of deploying a tool in a large HPC architecture, it is recommended

to start with part of the system at first; then tune the fanout, and finally scale the tool. In

SuperMUC, for instance, the deployment can be done first in three islands in order to calculate

the number of agents needed. Furthermore, some sort of fault tolerance approach must be

used to keep the tool running over more than one year without management intervention.

Finally, logging is required to debug the system. If logging is done centrally (in one directory)

a representation system with only a few agents has to be selected to achieve scalability.

7.3 Scalability Tests

Scalability tests were carried out on the fat-nodes with seven different configurations and the

time taken to transmit a command and the job information was recorded. Every configuration

had one SyncAgent (as a frontend) and 206 PerSyst Agents. The only variation was the num-

ber of Collectors (1 to 7 Collectors were used). Seven measurements were taken and averaged

for every configuration except one. The configuration with one Collector Agent (a SyncAgent,

a Collector Agent, and 206 PerSyst Agents) was not stable and it was only possible to take

105



CHAPTER 7. CONTEXT OF EVALUATION AND RESULTS

one successful measurement. The agents received late heartbeats from the parent agents and

terminated, with the use of only one Collector. The time taken for the job information trans-

mission on all the branches of the tree was recorded and is shown in Figure 7.1a. The number

of messages varies with the number of jobs. On average, there are 26 jobs in one point in

time in SuperMIG. SyncAgents have to split the job information on average into 3 messages.

The Collectors usually send one message with the job information to all the SyncAgents (206

messages for all the PerSyst Agent). The time taken to transmit a command was recorded for

all these configurations and the results are shown in Figure 7.2a. There is only one command

message per agent. In both cases the measurements were done by instrumenting at the agent

which initiates the communication the time taken to send the job information or commands to

its child agents.

(a) Time plot. (b) Speedup plot.

Figure 7.1: Scalability for job information transmission

(a) Time plot. (b) Speedup plot.

Figure 7.2: Scalability of command transmission

Figure 7.1b shows the scalability results with a better speedup than the expected ’ideal’

speedup. This is due to the instability of the tool when only using one Collector. The scalability

plot (see Figure 7.2b) shows that the command transmission does not scale as well as the ideal

speedup. However, the scalability still remains linear. Scalability tests were not fully performed

with all configurations in SuperMUC. Having the PerSyst Tool fail with only one Collector on
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a systemwide basis will disturb the running applications. Due to the heartbeat system (refer

to Section 4.5), the failing agents terminate due to late heartbeats from their parent. The

parent agent will eventually replace them. Thus, the placement of agents and their termination

will occur in a cycle. Table 7.2 shows the scalability results for three configurations. For all

configurations there was one additional SyncAgent acting as the frontend. The 21.5 PerSyst

Agents per Collector is an average. Half of the collectors will have 22 PerSyst Agents while the

other half only 21.

Tree Configuration Communication time

Configu- Number Collectors PerSyst Frontend to SyncAgent Collector Agent

ration of Sync- per Sync- Agents per SyncAgents to Collec- to PerSyst

Id Agents Agent Collector [ms] tors [ms] Agents [ms]

A 12 36 21.5 108 472 396

B 12 18 43 108 180 631

C 12 9 86 108 107 2658

Table 7.2: Scalability of the tool in SuperMUC.

Table 7.3 shows the aggregated results with the total time a command is communicated

downward on the agent tree (total time of propagation) and the total number of agents. These

results indicate that the best fanout of the tree is configuration B, which has the lowest total

time and the second to lowest total amount of agents.

Configuration Total time Total number

Id of propagation of Agents

[ms]

A 984 9733

B 925 9517

C 2881 9409

Table 7.3: Total time and number of Agents.

The measurements of the data collection include property processing time. The collection of

data is not necessarily simultaneous for all agents. Moreover, performance data is not communi-

cated throughout the entire agent tree, but through optimized routes. Thus, only the top-down

scalability has been tested. These results show that the agent tree is necessary to enable the

scaling of the tool to larger systems.

7.4 Results of the Transport System in SuperMUC

The PerSyst Tool runs in production mode on SuperMUC, analyzing automatically more than

10,000 application runs per month. The fanout of the tree hierarchy consists of one SyncAgent
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as a frontend, 12 SyncAgents as a middle layer, 216 Collectors, and 9288 PerSyst Agents at

every compute node. The 13 SyncAgents were placed at an external node which is used for

administrative tasks. Six Collectors per island were placed having each 43 PerSyst Agents (child

agents). Parent-child relations among Collectors and PerSyst Agents were placed in the same

island. Thus, the tree agent topology exploited the faster interconnects with these placements.

The tool was configured to run and aggregate using deciles (ten percentiles) and at time intervals

of ten minutes with the cycle times shown in Table 7.4.

Total cycle time (TC) 600 seconds

Measuring and analysis phase 120 seconds

Idle Phase 480 seconds

Tool basic measurement time 10 seconds

Table 7.4: Times for cycle control

The following sections provide results on the influence of different aspects of the transport

system on the performance data.

7.4.1 Optimized Routes

The amount of performance data (property data grouped per job) that an agent type (PerSyst,

Collector, or SyncAgent) aggregates and stores was recorded. The average amount of ten

observations (at ten different measuring intervals) of property data grouped per job at each agent

type is shown in Table 7.5. The collection per job at a single point for quantile aggregation

is done only at the Collector Agent level and at the PerSyst Agent level. On average, in

one measuring interval, 91% of the performance data of a job is processed centrally at one

node. Thus, the estimation of quantiles (as opposed to exact calculations) is on average 91%

circumvented.

Tree level Average amount of property data Percentage

(Grouped per job)

Frontend 4.8 2.59%

SyncAgents 11.8 6.37%

Collector Agents 157.5 85%

PerSyst Agents 11.2 6.04%

Total number of jobs 185.3 100%

Table 7.5: Distribution of jobs in agent tree.

The tree network can be used fully when the performance data of all the jobs is transmitted

to the frontend via the connecting tree nodes. The alternative is to try to collect this data at

selected nodes with the job load balancing algorithm (described in Section 5.3) and perform
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the output when the job has been collected in its entirety. In order to quantify the usage of the

agent tree with both methods, the number of nodes where the performance data of a job was

being sent was added for all jobs. Table 7.6 shows these figures.

Retrieving method Average number of nodes used

Data transmitted through 905.81

established topology

connections until frontend

Data transmitted to selected 217.59

nodes with job load

balancing algorithm

Table 7.6: Usage of the topology network for 58 measurements taken during a week.

The results show that the usage of the topology nodes is more than a factor of four better

compared to the traditional bottom-up retrieval of job information. Optimizations on the

collection of data further ensure the scalability of the tool.

7.4.2 Collection Times

For this experiment all the properties were sent to the collector (no property filtering was

applied, as described in Chapter 3). At the level of the PerSyst Agent, three different sets of

properties are sent: one for the hardware events, one for the SAR, I/O and network events,

and one set for the memory consumption. Nine islands were measured and the average of the

collection time per PerSyst Agent was taken. Given that there are 43 PerSyst Agents per

collector, the incoming amount of data at a collecting point was considered.

Properties IO, SAR, and Network Memory Usage Hardware counter

Bytes 87294 6708 110424

Average time [s] 0.14 0.02 0.85

Used bandwidth [MiB/s] 0.56 0.31 0.12

Table 7.7: Collection time in Collector Agents.

The collection times include property processing, as the properties evaluated and packed into

groups. As soon as a group reaches a certain size, they are transmitted. The reason why the

bandwidths are low, are due to the asynchronous collection (including processing and grouping

time) of properties.

7.4.3 Reduction of Information

To check the reduction of information due to the use of properties, and quantile aggregation; the

theoretical amount of all the events was calculated and compared to the collected properties.
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• There are a total of 36 events collected for the different devices of SuperMUC. These

break down into 22 hardware events, 1 memory event, 6 I/O events, 3 SAR events, and 4

infiniband network events. From the hardware counter events, the 2 memory bandwidth

events are collectible per node, and the power events each are collected per package (two

packages per node) or per DRAM. The 6 I/O events and the 4 network events are collected

per node. If all events were to be collected raw, without any transformation, filtering, or

reduction, the amount of data would sum up to 6.7 million data items, see Table 7.8. This

is equivalent to 25MiB in floating point with single precision.

• There are 34 properties for SuperMUC. An evaluation of how many jobs were running at

a time (on a monitoring interval) resulted on an average of 142 out of 10 observations in

different days. The information collected on each job is 11 deciles (10 plus the minimum),

the average, and the number of observations: 13 data items. Assuming all had a severity

and using the average quantity of jobs that run at one time on the supercomputer, the

total amount of data items collected are 142 jobs times 13 data items times 34 properties

= 62, 764. This is equivalent to 245KiB of data in floating point with single precision.

62,764 data items represents only 0.94% of the 6.7 million raw hardware counters. Thus, the

reduction of information is of 99.06%.

Event Domain Amount of events Total in SuperMUC

Hardware counter

events

Hyperthread 18 5,349,888

Node 2 18,432

Socket (2 sockets in a node) 2 36,864

IO events Node 6 55,269

Network events Node 4 36,864

Virtual Memory Hyperthread 1 287,216

SAR events Hyperthread 3 891,648

Total amount 6,676,181 Events

Table 7.8: Amount of collected data in SuperMUC without reduction techniques.

The reduction of information due to the selection of thresholds was measured by comparing

the number of records generated in a week with the full collection of properties with the records

of another week with thresholds being set. In the case of SuperMUC, there were 4,027,187

records with all the property information in a week, and 2,346,044 records with property selec-

tion. Thus, the information was reduced by approximately 42%.

7.4.4 Negligible Interference on Running Jobs

This validation tests whether the interference of production applications caused by the PerSyst

Tool is statistically negligible. A statistical equivalence test was carried out as described in [117]

110



7.5. QUALITY OF QUANTILE ESTIMATION

to study the interference of the PerSyst Tool. The application used for this test solves a heat

propagation equation with the Jacobi method (with an arithmetic intensive kernel) in a two

dimensional plane. The validation is performed by comparing the runtime in different nodes

without the PerSyst Tool (Group A) and the runtime of the same application in different nodes

with the tool running in the background (Group B). The distributional assumption is that the

runtime is approximately normally distributed for both groups with mean values µA and µB

and an unknown common variance σ2.

The evaluation is done with a 1% maximum tolerated deviation of µA and µB (both 1% less

than the lower limit, l, and 1% more than the upper limit, u) and with 20 observations to

estimate both µA and µB.

Group A(nA = 20) : Ā = 659.871s, SA = 4.433

Group B(nB = 20) : B̄ = 659.880s, SB = 3.126

l = 653.271, u = 666.469

Note that Ā and B̄ are the average values of A and B respectively; SA, and SB are the standard

deviation of A and B respectively; and nA and nB are the number of observations for Group

A and Group B respectively. The null hypothesis is that Group B is not equivalent to Group

A. The confidence limits for µA have been calculated for one sided confidence level of 99% with

the central t-distribution:

µA − Cl = 662.035, µA + Cu = 662.706

Given that l < µA − Cl and µA + Cu < u the null hypothesis can be rejected and the decision

is in favor of the equivalence. Thus, the interference caused by the PerSyst Tool on runnning

applications is negligible.

7.5 Quality of Quantile Estimation

The tool uses quantile estimation at the SyncAgent layers of the tree. At these layers the

performance data received are the quantile aggregation of the child nodes. This section evaluates

the quality of the quantile estimation. In order to evaluate the quality of estimating quantiles

1,000 random normally distributed numbers were used. The random values were divided into

ten groups (i.e. 100 elements in each group). The grouping was performed without ordering

the random numbers: they were grouped in a round robin fashion as they were generated. The

meta-aggregation of deciles of the ten groups was done as well as the aggregation of the original

array containing the 1,000 random values. The results are shown in Figure 7.3. It can be seen

that the quality of the distribution is preserved by the estimation.

7.6 Validations of Performance Measurements

In this section, the validation of the performance measurements are presented. These valida-

tions are not exhaustive for both architectures presented (Westmere-EX and Sandy Bridge-EP)
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Figure 7.3: Evaluation of Quantile Estimation

but most of the important metrics have been covered. The measurements were done with direct

instrumentation of the application and using the same measurement library as in the PerSyst

tool. Not every single metric was validated especially if it is known that they produce erroneous

results (for example: expensive instructions count in Westmere-EX, and flop count in Sandy

Bridge-EP). The validation of energy consumption is not presented in this document, an exten-

sive validation has already been done [47, 83]. All of the tests that were conducted with SMT

enabled3.

7.6.1 Flops

The validation of flops has only been done for the Westmere-EX architecture directly by mea-

surements done with the PerSyst Tool. Others [19,111] have already uncovered the problem of

over counting of flops in the Sandy Bridge-EP architecture. Although the measurements have

been implemented as an estimation of the real floating operations, it will not be covered, nor

validated, in this section. Figure 7.4a shows a validation without the PerSyst Tool, of the single

precision and double precision triad at different array sizes (See Listing 7.1). The interface

to LIKWID (used by the PerSyst Tool) was used instead to directly measure the triad. The

amount of real flops/s against the measured flops is shown in Figure 7.4 and the linear fits show

that both slopes are close to one (both fits rendered R2 = 1, a perfect fit). Figure 7.4b shows

the flops measured on an application; pmatmul. pmatmul is a matrix multiplication where the

exact amount of flops is known and printed out for testing purposes. The experiment was set

with 4 fat nodes (160 cores) and the average of the flops/s within the measured lapse is shown

in Figure 7.4 as the actual average. Measured average and deciles are also shown.

The results with a mixed amount of single and double precision are very similar to those shown

in graph Figure 7.4a. Listing 7.1 was modified to have a and b arrays declared as double (double

precision), and scalar and c was declared as float (single precision). The fit produced a slope

3Due to special operation conditions, the SMT can not be turned off.
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of approximately one with R2 = 1 (the linear regression was y = 1, 001x + 34673, where y is

measured and x is real.)

Listing 7.1: Triad used for measuring flops

for ( j =0; j<STREAM ARRAY SIZE; j++)

a [ j ] = b [ j ]+ s c a l a r ∗c [ j ] ;

(a) Validation without the PerSyst framework (b) Validation with the PerSyst Tool

Figure 7.4: Validation of Flops/s in Westmere-EX.

7.6.2 Memory Bandwidth

The highest memory bandwidths can be determined with the STREAM benchmark [70]. This

benchmark provides four different types of operations: copying an array from one to another,

multiplying an array with a scalar, adding two arrays, and the triad (which consists of scaling

an array and adding it to another one). The triad operation was used with different array sizes

and measured with the measuring interface to LIKWID. Figure 7.5 shows the results of the total

bytes divided by the time the STREAM benchmark took to perform the triad operation (shown

as theoretical MB/s). The figure also shows the counter based measurements (shown as Mea-

sured MB/s). These measurements are shown for both architectures, Westmere-EX and Sandy

Bridge-EP. In the case of the Westmere-EX, all of the measurements were under a 1.1% error.

For the Sandy Bridge-EP architecture, the average error over all measurements is 4%, with

only two measurements significantly above the theoretical measurement (array size 2441 MB

with 12% error and 3662 MB with 16%), otherwise all of the measurements were under 5% error.

7.6.3 L3 Bandwidth

The STREAM benchmark was used to evaluate the L3 bandwidth. This experiment was done

by using the triad (see Listing 7.1) and by changing the array size of the three vectors. The

interface to LIKWID was used to validate this metric. The total theoretical amount of data
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(a) Memory bandwidth measurements in the

Westmere-EX architecture.

(b) Memory bandwidth measurements in Sandy

Bridge-EP architecture

Figure 7.5: Memory Bandwidth with STREAM and the LIKWID interface.

loaded to the L2 cache was calculated (array size * 3 arrays * size of float). The total measured

data is calculated with 64 * (L2 LINES IN ALL + L2 LINES OUT DEMAND DIRTY) (the

same as the property value, see Section 3.3.16 without dividing by time). The results are shown

in Figure 7.6, the error between the theoretical amount of data loaded to L2 and the measured

values remains at about 5% for all measurements. This can be seen in the graph and explains

why the higher the array size, the more the gap separates. The over-counting of a constant 5%

Figure 7.6: Validation of L3 Bandwidth in Sandy Bridge-EP

of the data loaded is not considered critical and therefore useful for detecting L3 bandwidth

related bottlenecks.

7.6.4 Instruction Count

The validation of instructions was performed with the kernel shown in Listing 7.2.

Listing 7.2: Kernel for measuring number of instructions
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for ( j = 0 ; j < s i z e ; j++) {
u [ j ] = 0 .05 ∗ u [ j ] + j ;

}

The corresponding assembly language (Listing 7.3) shows that there are nine instructions per

iteration. Thus, the number of instructions at runtime increases by a factor of nine with the

array size (iterating from 0 to size− 1 ).

Listing 7.3: Assembler code for measuring the number of instructions

.L3 :

c v t s i 2 s d %eax , %xmm1 # j , tmp67

addl $1 , %eax #, j

movapd %xmm2, %xmm0 # tmp69 , tmp65

mulsd (%r d i ) , %xmm0 #∗ ivtmp.42 , tmp65

addsd %xmm1, %xmm0 # tmp67 , tmp65

movsd %xmm0, (%r d i ) # tmp65 ,∗ ivtmp.42

addq $8 , %r d i #, ivtmp.42

cmpl %eax , %es i # j , s ize

jg .L3 #,

Measurements on the amount of instructions were made in order to determine whether the in-

struction count is correctly measured. Figure 7.7 shows the measurements with different array

sizes (array u in Listing 7.2) for both architectures: Westmere-EX (Figure 7.7a), and Sandy

Bridge-EP (Figure 7.7b). The linear regression resulted in a slope of exactly nine instructions

per iteration (see assembly code 7.3) for both architectures, as expected. The coefficient of

determination equals one—a perfect fit—in both cases (R2 = 1).

(a) Instruction count validation in Westmere-EX (b) Instruction count validation in Sandy Bridge-EP

Figure 7.7: Validation of instruction count using the LIKWID interface of the PerSyst Tool.

7.6.5 Load Imbalance Properties

The validation of the imbalance properties was done with the aid of the APART Test Suite [37],

hereafter ATS. ATS was designed to generate OpenMP or MPI communication patterns, with

the intention of creating common bottlenecks that could be tested by automatic performance
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tools. Figure 7.8 shows the block distribution used (named as b2 in ATS), with the first half of

the MPI tasks performing 10% of the work that the second half of the tasks were performing,

i.e. low = 0.1 and high = 1. The pattern used creates a load imbalance at an mpi barrier (the

imbalance at mpi barrier function of the ATS was used ).

Figure 7.8: ATS load imbalance distribution pattern used to create and test the load imbalance prop-

erties.

The ATS function was called one thousand times in a for-loop to ensure that it lasted long

enough to be measured by a cycle of the PerSyst Tool. Two lines in the ATS were changed in

order to emulate codes with floating point operation-intensive kernels. The do work() function

which runs a for-loop exchanging integral values at random positions was changed so that it

runs longer. The arrays were declared as floats and a floating point operation was introduced,

a division by (i+10), as illustrated in Listing 7.4.

Listing 7.4: ATS do work kernel modifications

for ( i =0; i<N; ++i ) {
arrA [ myrand ( ) % ARR MAX] =

arrB [ myrand ( ) % ARR MAX] / ( double ) ( i +10);

}

To validate the intra-node performance property, the number of floating point operations in

the Westmere-EX architecture and the number of instructions in the Sandy Bridge-EP archi-

tecture were measured for the modified ATS code and the imbalance performance pattern as

previously described (See Listing 7.4). For the Westmere-EX architecture the job was set up

to run in one fat node of SuperMUC with 40 cores. The property evaluates the difference of

the maximum value and the minimum value, which was 58 MFlop/s for this job. Figure 7.9a

shows the deciles measured and aggregated by the PerSyst Tool. The first five deciles are about

10% of the upper five deciles, which corresponds to the setting chosen for the ATS test (on

average it was a ratio of 1:9.997 of the first median with respect to the second median). For

the Sandy Bridge-EP architecture, the job was set up to run in one thin node of SuperMUC

with 16 cores. The instruction count shows a marked difference for the first median (0th to 5th

decile) compared to the second median (6th to 10th decile) as shown in Figure 7.9. However,

the ratio 1:10 is not preserved due to executed instructions outside from the kernel are included

in the measurements. Floating point operations were not used on Sandy Bridge-EP for this

property due to over-counting of the events. The property evaluates the difference between the

maximum value with the minimum value which was 3.67 Giga Instructions in this case.
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(a) Westmere-EX architecture (b) Sandy Bridge-EP architecture

Figure 7.9: Validation of intra-node imbalance

The inter-node imbalance measured by the PerSyst Tool properties was also validated using

the ATS code which was used for the intra-node imbalance. The difference in the experiment is

that two fat nodes (Westmere-EX) were used to validate the inter-node imbalance. On the other

hand, 20 thin nodes (Sandy Bridge-EP architecture) of SuperMUC were used for the job to val-

idate the internode imbalance property that uses the instruction count. Figure 7.10a shows the

measured flops/s and Figure 7.10b shows the instructions retired in average at each node. This

information is shown as deciles given that the PerSyst Tool extracts aggregated data. Given

that two nodes will repeat the first five deciles (and also the last five with the same value),

only the 5th and 10th deciles are shown. The total average of flops calculated by the internode

imbalance property was the same as the average calculated by the flop count (avg = 35MFlops).

Likewise, the total average of instructions calculated by the internode imbalance property was

the same as the average calculated by the instruction count (avg = 2.374 GInstructions). From

Figure 7.10b it is possible to determine that there is load imbalance, however, it does not corre-

spond to the proportions of 0.1:1 that was emulated with the ATS test suite, while Figure 7.10a

does preserve this ratio. Thus, it can be concluded that using the flop count to evaluate the im-

balance property is more accurate than with the instruction count on flop-intensive applications.

The experiment was repeated by using the flop count (as opposed to using retired instruc-

tions) for inter-node imbalance in the Sandy Bridge-EP architecture. The ratio of the im-

balanced tasks preserves the 10% which was set on the ATS code. Figure 7.11 shows the

measurement of one monitoring interval.

In conclusion, a more precise detection of load imbalance can be done by using flops on flop

intensive applications.

7.6.6 Expensive Instructions Property

The expensive instruction validation was carried out with a kernel with four divisions in a loop

(see Listing 7.5). The kernel was compiled with the -O0 flag to avoid compiler optimizations.

The total number of divisions was 4 · (n− 1), where n is the number of iterations loops should
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(a) Westmere-EX architecture (b) Sandy Bridge-EP architecture

Figure 7.10: Validation of inter-node imbalance property

Figure 7.11: Validation of inter-node imbalance for Sandy Bridge-EP using floating point operations.
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run (variable n in Listing 7.5). Figure 7.12 illustrates the results of counting the expensive

instructions; the graph shows how expensive instructions are strongly correlated to the total

number of divisions performed in the kernel. The expensive instruction event counter is about

15 times the real number of divisions. The measurements were only carried out in the Sandy

Bridge-EP architecture, given that the event may produce inaccurate results when SMT is en-

abled [4].

Listing 7.5: Kernel for expensive instructions

for ( int i = 1 ; i < n − 1 ; i++) {
for ( int j = 1 ; j < n − 1 ; j++) {

u [ i ∗n+j ] = u [ i ∗n+j −1]/1.333 + u [ i ∗n+j +1]/3.421

+ u [ ( i −1)∗n+j ]/9.786+u [ ( i +1)∗n+j ] / 0 . 2 3 6 ;

}
}

Figure 7.12: Expensive instruction validation with the LIKWID interface

7.6.7 Loads To Stores Ratio Property

Loads and stores are validated separately with the assumption that their ratio will produce cor-

rect results if they produce precise counts. The triad in the STREAM benchmark was used and

compiled with O3. The O3 optimization compiled the code to SSE instructions (movaps, addps,

mulps) which optimize the code to execute four loop iterations in one cycle. Listing 7.6 shows

the assembly code of the triad function which was compiled with an array size of 20,000,000

floats.

Listing 7.6: Assembler code for measuring number of instructions

.LFB35 :

movaps .LC0(%r i p ) , %xmm1 #, tmp68

x o r l %eax , %eax # ivtmp.65
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. p 2 a l i g n 4 , ,10

. p 2 a l i g n 3

.L2 :

movaps %xmm1, %xmm0 # tmp68 , tmp65

mulps c(%rax ) , %xmm0 #, tmp65

addps b(%rax ) , %xmm0 #, tmp65

movaps %xmm0, a(%rax ) # tmp65 ,

addq $16 , %rax #, ivtmp.65

cmpq $80000000 , %rax #, ivtmp.65

jne .L2 #,

rep

ret

.LFE35 :

Figure 7.13 shows the array sizes and the corresponding measurements of loads in the

Westmere-EX (Figure 7.13a) and the Sandy Bridge-EP (Figure 7.13b) architecture. Note that

only one load every two iterations is done with the vectorized instructions, hence the slope of

the line is 0.5 in both architectures. The regression shows a perfect fit for the array sizes with

respect to the measured loads in both architectures. Thus, the loads were measured correctly.

(a) Validation of loads in Westmere-EX (b) Validation of loads in Sandy Bridge-EP

Figure 7.13: Validation of loads using the LIKWID interface with the PerSyst Tool

The same code and compilation options were used to measure the stores. Figure 7.14 shows

the array sizes and the corresponding measurements of stores in the Westmere-EX (Figure 7.14a)

and the Sandy Birdge-EP (Figure 7.14b) architecture. One store is done every four iterations

due to the vectorized instructions, hence the slope of the line is 0.25 in both architectures. The

regression shows a perfect fit for the array sizes with respect to the measured stores in both

architectures. Thus, the store count was validated successfully.

Given that regressions applied to the measurement data fitted with a coefficient of deter-

mination equals one (R2 = 1), the stores and loads were measured correctly. This, in turn,

validates the loads to store ratio.
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(a) Validation of stores in Westmere-EX (b) Validation of stores in Sandy Bridge-EP

Figure 7.14: Validation of stores using the LIKWID interface with the PerSyst Tool

7.6.8 Branches

The triad in the STREAM benchmark was used and compiled with the -O3 flag to measure the

branches. The O3 optimization produced SSE instructions (movaps, addps, mulps) which opti-

mize the code to execute four loop iterations in one cycle (see Listing 7.6). Figure 7.15 shows

the compilation with different array sizes and the corresponding measurements of the number

of branches for the Westmere-EX (Figure 7.15a) and the Sandy Bridge-EP (Figure 7.15b) ar-

chitecture. The vectorization allowed four loop iterations to be done in one cycle. Thus, there

is only one branch every four iterations. This is why the slope of the line shown in Figures 7.15a

and 7.15b is 0.25. The regression was done with a perfect fit (R2 = 1) in both architectures.

Thus, the number of branches counted are reliable.

(a) Validation of branches in Westmere-EX (b) Validation of branches in Sandy Bridge-EP

Figure 7.15: Validation of branches using the LIKWID interface with the PerSyst Tool

7.6.9 Branch Misspredictions

A benchmark provided by [48] was used to generate branch misspredicions. Arrays are initialized

randomly with equal probability of being either 1 or -1 as shown in Listing 7.7, line 4. The

four branches are in lines: 14, 17, 19, and 24. From these four branches it is expected that
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approximately one branch at each inner iteration is misspredicted with a probability of 50%

(the branch at line 19). The assumption is that all probabilities are equal. If P (A) is the

probability of missprediction (P (A′) is the probability of a good prediction) and P (B) is the

probability of having c[i] < 0 (therefore, P (B′) is the probability of having a c[i] >= 0), then

P (A/B) = P (A′/B) = P (A/B′) = P (A′/B′). Thus, the probability of having misspredicted

branches (P (A)) is 0.5 for one branch. If one out of four branches has a probability of being

misspredicted, the ratio of misspredicted branches to the total branches should be roughly

0.125 (i.e. half the number of branches of the loop are misspredicted while the total amount

of branches is 4 times the number of loops (0.5 ∗ L)/(4 ∗ L) = 0.125, where L is the number of

inner loops).

Listing 7.7: Benchmark for branch misspredictions

int main ( ){
2 // . . .

for ( int i =0; i<s i z e ; i++)

4 a [ i ]=b [ i ]=c [ i ]=d [ i ]=rand ( )/ double (RAND MAX)∗2 .0 −1 .0 ;

// . . .

6 // s t a r t measuring

d o t r i a d ( a , b , c , d , s i z e , s i z e ) ;

8 // s t op measuring

// . . .

10 }

12 void d o t r i a d (double ∗a , double ∗b , double ∗c ,

double ∗d , int s i z e , int n i t e r ){
14 for ( int j =0; j<n i t e r ; j++){

#pragma novector

16 #pragma vec to r temporal

for ( int i =0; i<s i z e ; i++) {
18 //Branch wi th 50% p r o b a b i l i t y o f be ing n e g a t i v e

i f ( c [ i ]<0.0)

20 a [ i ]=b [ i ]−c [ i ]∗d [ i ] ;

else

22 a [ i ]=b [ i ]+c [ i ]∗d [ i ] ;

}
24 i f ( a [ s i z e >>1]<−10.0){

dummy( a , b , c , d ) ;

26 }
}

28 }

The results show that the missprediction rate converges to 0.2 (almost 62% more misspre-

dictions as expected). In all likelihood this means that the behaviour of the predictor is not

as expected. A second possibility is that the misspredictions are overcounted. In order to cal-

culate the theoretical ratio of misses to total branches, the behaviour of the predictor must be
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known. By removing any other branch in Listing 7.7 (for example a for loop or the while loop)

the number of misspredicted branches drops to almost zero. It could not be verified that the

measured hardware counters are reliable.

Figure 7.16: Validation of misspredicted instructions for Sandy Bridge-EP

7.6.10 Core Frequency Property

The frequency can be changed via the CPUfreq subsystem [23] provided by the Linux Kernel (2.6

or above). In order to have a constant frequency, the userspace governor was used. This gover-

nor, or policy for setting the frequency, allows the setting of a constant frequency. Running a

sleep may put the processor on an idle state (also known as C states) even at userspace [50,87].

Thus, the measurements were carried out with a matrix-matrix multiplication with 16 MPI

tasks. Every MPI task was running a matrix multiplication and there was no communication

involved. All of the measured frequencies matched the set userspace frequency, when the fre-

quency was set to all the cores in the processor as shown in Table 7.9. However, when setting

two or more different frequencies in a core of the same processor, only the highest frequency

was measured for all the cores.

Frequency set Measured Frequency

GHz GHz

1.5 1.5

1.7 1.7

1.8 1.8

2.1 2.1

2.3 2.3

2.5 2.5

2.6 2.6

2.7 2.7

Table 7.9: Set frequency compared to measured frequency.
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7.6.11 I/O Bytes per Operation

The IOR benchmark [104] was used with the HDF5 library and instrumented with Darshan [20]

to obtain the size of the requests. The benchmark was configured to write and read files with

transfer sizes of 8MiB (access sizes) with one file of 32TiB (32GiB from each process using 1024

processes).

The benchmark was set to perform first write operations and then the read operations.

The typical size detected by Darshan are access sizes of 8,388,608 for reading and writing.

The results measured directly with the PerSyst Tool are shown in Figure 7.17. The graphs

show in the horizontal axis the timeline with the first measurements being write operations

(Figure 7.17a), and the second measurements being read operations (Figure 7.17b). Both graphs

also show the aggregated measures with ten percentiles (deciles) of access sizes on the vertical

axis with each line representing a decile. The quantiles measured show a range of values of

[8.5MiB, 8.76MiB] for writing and [8.55MiB, 8.95MiB] for reading. These results correspond to

an error of [1.34%, 4.32%] for writing and [1.9%, 6.7%] for reading.

(a) I/O Written Bytes per Write Operation

(b) I/O Read Bytes per Read Operation

Figure 7.17: Validation of I/O Bytes per operation
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7.6.12 I/O Opens and Closes

To validate the I/O Opens and Closes the IOR benchmark [104] was used. The benchmark was

instrumented with Darshan [20] and was configured to write and read files with transfer sizes

of 8MB (access sizes) with files of 16GB and using 1024 processes. Darshan reports a total of

20, 480, 000 open operations. Given that all open operations are paired with a close operation,

the same amount of closed operations were performed. The 1024 processes are measured by

the mmpmon [51] in groups of 16 (16 cores per node). Thus, the total amount of opens (and

closes) per node amounts to 320,000. The job had a total duration of 7,523 seconds, which

means that roughly 43.5 opens (and thus 43.5 closes) per second were performed. The results

measured directly with the PerSyst Tool are shown in Figure 7.18. The outliers were removed

(first measurement at 13:50) as the opens and closes started after the measurement. The average

of opens and closes among nodes and time (total average) obtained from the measurements of

the tool was 46.3 opens and 41.0 closes. These results have only 6.4% and 5.9% error to the

expected value for opens and closes respectively.

(a) I/O Open Operations
(b) I/O Close Operations

Figure 7.18: Validation of I/O per open and per close operation

7.6.13 Memory Usage Property

The memory usage was validated with the STREAM benchmark by using different array sizes.

The first five runs were done with arrays in the stack, while the last three were done with the

array allocated on the heap (allocating more than 2.9GiB on the stack was not permitted by the

compiler). By reading the /proc/meminfo virtual file of the operating system, the tool can find

out the usage of memory for the entire compute node. This not only includes the user processes

(application processes) but also the memory of the root processes and the batch scheduler.

Thus, to design the experiment the same amount of increment of memory were used per run,

expecting to have a proportional increment of the total memory (it was assumed that the root
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processes’ memory remains constant). Figure 7.19 shows the result with a directly proportional

increase in the measured memory with respect to the memory increase in each run (the slope is

roughly 1 and R2 = 0.99). The increase in memory for each run was of 228.9 MiB (from 2059.9

MiB for the first experiment and 3662.1 MiB the last experiment).

Figure 7.19: Validation of memory usage

—

The foregoing sections provided a validation of individual metrics and properties. Most of

the individual metrics were validated, therefore, the combinations of them are also valid. It

can be concluded that load imbalance in arithmetic intensive operations can best be detected

with floating point operations, even if the architecture over-counts the events of floating point

operations. In general, the property value formulae could render false positives for intra-node

imbalance. For example: a job does not use the entire node for calculations due to memory

requirements will report load imbalance (some cores are idle). In this case the memory usage

property will help sort out the false positive. Another case is when an increasing memory

usage does not necessarily indicate a memory leak. These two aren’t bottlenecks but will be

reported as such. The performance expert must compare all information available to sort out

false positives. However, it is inevitable to have them with the current scheme. This is why only

recommendations can be given and the tool aims at a preliminary detection of bottlenecks as op-

posed to a detailed analysis. A detailed analysis with instrumentation to applications which are

considered inefficient is needed to establish the real causes or to discard potential false positives.

In order to validate branch misspredictions it is necessary to emulate the predictor to calcu-

late the theoretical misspredicted branches. A similar problem applies when trying to validate

the L3 cache hits and L3 cache misses. The hardware prefetcher makes it difficult to estimate

the theoretical cache hits and cache misses (even when trying to randomize the access to an

array).

Some of the properties can be enhanced to detect the bottlenecks more precisely. For

example: the intra-node load imbalance property can be enhanced by adding a term into the
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equation which does not only measure the difference between floating point operations among

cores. When most of the cores are idling the severity should be greater than the severity of only

one core idling. The idea is to integrate into the severity a measure of the number of idling

cores with respect to the total number of cores in the node.

7.7 Selection of Thresholds

Thresholds are used to decide whether a property has a severity or not. They are selected

according to one of the following heuristics:

• A threshold can be based on the hardware characteristics and expert knowledge. Keyword:

Hardware.

• A threshold can be based on a benchmark. Keyword: Benchmark.

• A threshold can be chosen at the point where the performance does not significantly change

when improving the property value. In this case, the definition of what is significant is

based on the decision of the performance expert. Keyword: Performance.

• A threshold can be chosen based on statistical data. Keyword: Statistics.

Note that the keywords are used in the following tables to describe how the thresholds were set.

Memory Bandwidth Threshold: The threshold to split the memory bound from the com-

pute bound codes can be determined by saturating a compute node with memory accesses. This

threshold is, thus, more related to the hardware characteristics. STREAM was used to calculate

the threshold. The bandwidth average value of all the STREAM kernels (copy of an array to

another array, adding of two array, scaling of an array, and the triad) when a node is saturated

was used. This value was divided by the number of cores in the node to obtain the threshold.

Table 7.10 shows the threshold values for each architecture. The threshold to decide whether

Bandwidth per node Bandwidth per core Used heuristic

Westmere-EX 64 GB/s 1.625 GB/s Benchmark

Sandy Bridge-EP 65 GB/s 4.023 GB/s Benchmark

Table 7.10: Average memory bandwidth from STREAM

the code is compute bound is if the memory bandwidth is less than 1.625 GB/s or 4.023 GB/s

for Westmere-EX and Sandy Bridge-EP respectively.

I/O Thresholds: Selecting the threshold for the mean read request size and mean write

request size has been done by comparing the performance of different request sizes. The technical

report with results using the same GPFS system at the Leibniz Supercomputing centre [73]

shows the best performance when request sizes are between 2MB and 32MB. Therefore, the
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threshold has been chosen to 2MB. Table 7.11 shows the I/O related thresholds with the heuristic

used for each property threshold.

Property Threshold value Used heuristic

IO Read Bytes 1.1 GiB/s Statistics

IO Written Bytes 1.1 MiB/s Statistics

Mean Size IO Reads 2 MiB Performance

Mean Size IO Write 2 MiB Performance

Table 7.11: I/O Thresholds

If the I/O read or write bandwidth is below the given threasholds, the corresponding mean

size of of the I/O operations will be checked. I/O operations with less than 2MiB will produce

a recommendation to consolidate the I/O requests.

Other Thresholds: Table 7.12 shows the threshold values for each property. The values

determined by using statistical data (keyword statistics) were taken from the Sandy Bridge-EP

architecture, by gathering the values of one week of measurements and taking the value with the

Pareto rule: the 80th percentile is taken as a threshold and any value below is not considered a

bottleneck for increasing severity with increasing property value. On the other hand, the 20th

percentile is taken as a threshold for increasing severity with decreasing property value.
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Property Threshold value Used heuristic

Flops 0.15*Peak Flops Hardware

Instructions 0.25 * Peak Instructions Hardware

Core Frequency (Max. frequency Hardware

- Min. frequency)*0.7

+ Min. frequency

Memory Usage 0.5 * Max. memory Hardware

CPI 1.6 Statistics

Expensive 1.7 · 108 Statistics

Instructions

Vectorized Flops 0.01 Statistics

AVX to SSE Ratio 0.013 Statistics

SP to DP Ratio 0.035 Statistics

Intra Node 0.5*Peak Instructions Hardware

Imbalance

L3 misses to 0.0003 Statistics

Instructions Ratio

L3 Cycles Ratio 0.03 Statistics

L3 Bandwidth 1.43 GiB/s Statistics

L3 Hits to Misses 0.35 Statistics

Loads To Misses Ratio 124 Statistics

Loads To Stores Ratio 4 Statistics

Mean Size Transmitted 256 Hardware

Packets

Mean Size Received 256 Hardware

Packets

Transmitted Bytes 100MB Statistics

Received Bytes 100MB Statistics

SAR User % 80% Statistics

SAR System % 20% Statistics

SAR IO Wait % 1% Statistics

Table 7.12: Thresholds and how they are selected
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7.8 Use cases of the PerSyst Tool

The PerSyst Tool analyzes automatically on SuperMUC more than 10,000 application runs per

month. This section provides results of the collected data from the automatic analyzes. The

two types of uses are demonstrated within this section. Firstly, the detection of bottlenecks of

an application. Secondly, a comprehensive view of three properties is given. Appendix A shows

a possible visualization of the property value and severity of the collected properties.

7.8.1 Detection of bottlenecks

In this section the detection of inefficient use of SuperMUC is presented with a real application.

An application run with 2048 cores, i.e. 128 nodes, was examined. It can be seen in Figure 7.20

that the percentiles 60, 70, 80, 90, and 100 can be visually grouped together, while the rest of

the percentiles have 0 flops/s. This means that about half of the cores were idle. The intra-node

imbalance was also severe (severity was most of the time close to one).

Figure 7.20: Application with bottleneck: Floating point operations/s

Using less than 16 cores per node can be justified if the memory per core is higher than

1.5GB. The tool detected that the memory usage was about 1.7GB per active core, but not

as twice as much (3GB/Core), such that the user did not require to use 8 Cores/Node. The

user was advised to redistribute the job using 12 cores per node (or more) if possible. The

application now runs with about 67% of the resources, with only 1376 cores (i.e. 86 nodes).

7.8.2 Comprehensive View of System Usage

The collected data can be processed in order to obtain a distribution of a given property in a

period of time. The data for floating point operations per second, instructions per second, and

memory bandwidth for all the measurements in ten days were collected. All of the values are

per core. The deciles were estimated from all the jobs which were measured and the average

was precisely calculated (as opposed to estimated) and the data included the measurement of
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’empty’ nodes, nodes which were not running a job. The results are shown in Figures 7.21a

through 7.21c. The decile estimation was done using the method described in Chapter 5.

(a) Instructions distribution

(b) Flops distribution

(c) Memory bandwidth usage distribution

Figure 7.21: Comprehensive view of system usage

Exact averages for these three properties are shown in Table 7.13. The averages come from

the same set of data used for estimating the deciles.

70% of the Westmere-EX cores run instructions in the order of GB, while 80% of the Sandy

Bridge-EP cores count more than 80%, both types of cores have averages in the order of giga

instructions. In the case of the flops, however, up to 10% are Giga flops per core, while 20%

(or less) of the cores run with Giga flops. The averages are in the order of 100 MFlops for

both architectures. Most of the measurements are not showing a significant memory bandwidth

usage, only 10% or less are considered memory bound.
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Sandy Bridge-EP Westmere-EX

Giga Instructions 2.54 3.04

Giga Flops 0.92 0.30

Memory Bandwidth GB/s 0.10 0.07

Table 7.13: Average Values per Core of Usage for the SuperMUC Processor Architectures
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Conclusions and Outlook

This thesis describes concepts and methods for systemwide monitoring of large scale HPC ar-

chitectures. These concepts and methods have been implemented in the PerSyst Tool which

was extensively evaluated on a petaflop system, SuperMUC. The results show that the con-

cepts presented allow for a scalable, low overhead monitoring which also provides a preliminary

analysis of user codes. The optimization cycle identified starts with a preliminary detection

of bottlenecks in user codes which are being run in a supercomputer. The tool supports this

optimization cycle without requiring user training and without requiring the users to perform

additional actions to monitor the performance of their codes. Recommendations given for the

bottlenecks found allow to guide the detailed analysis and the optimization.

The main concepts developed are the on-line analysis of application runs adapted to sys-

temwide monitoring without instrumentation. This on-line analysis is achieved with codified

expert knowledge in strategy maps which are designed to reveal bottlenecks in an application.

Scalability is achieved with a hierarchical distributed software architecture: a tree of agents

which can operate autonomously and run continuously to measure, analyze, filter, and collect

performance data. The tree is designed to optimize the collection route and minimize the usage

of the network interconnect. Several techniques have been applied to reduce the volume of

performance data. Firstly, perforamance data are collected or discarded based on the strategy

maps. Thus, only the useful data are kept. Secondly, descriptive qualities of performance data

are retained by using quantiles which largely reduces the raw data.

The following aspects of the presented concepts were evaluated in detail. The scalability

of the agent tree as well as the the optimizations performed on the transport system were as-

sessed, showing the difference between using the entire agent tree or parts of it. The amount of

data reduction due to the usage of quantiles and due to selection of jobs was quantified. The

interference of the tool with running applications was evaluated. The result was that the tool

exerts a negligible interference. The quality of the method used for quantile estimation was

verified with a trial population. The validation of the performance measurements and analysis

was done and thresholds were determined. Finally, examples of use were provided such as bot-

tleneck detection and a comprehensive view of system performance.
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The following sections provide the conclusions and outlook for the different concepts, meth-

ods, and algorithms which were applied and their evaluation.

8.1 Conclusions

The PerSyst Tool’s agent tree is a highly scalable solution. The tool is scalable in all the objec-

tive areas: synchronized measurement, tool management, and accessing of data. The scalability

of a synchronous measurement was achieved with the tree hierarchy. The tool management is

feasible with a single configuration file, the start of one process (the frontend), and terminating

the agent tree can also be achieved only through the frontend. Scalability for extracting the

data was achieved by novel approaches to reduce information: storage of properties as opposed

to raw counters; selection of performance data that detect inefficiencies; and aggregation using

quantiles.

The tool was successfully ported to three systems, including the integration of two of them,

having one agent tree deal with two different types of architectures and runs in operation mode

in a petaflop system. The framework allows for the parallelization among measurment tools

and the measurement within a single measurment tool. This is useful when the number of cores

makes the measurement slow down, a parallel measurement in groups of cores is available.

Several tools and interfaces have been adapted to the PerSyst Tools framework including two

different batch schedulers. Thus, the framework is extensible and suitable to allow for a wide

variation of ad hoc implementations, including implementations for heterogeneous systems.

The deployers of the tools are typically system administrators or performance experts in su-

percomputing centres that need to collect performance data in large HPC architectures. These

users require to implement the specific functionalities related to the system, define properties,

and calibrate the thresholds. An estimate of the effort required to set the tool in production

mode is of one month work for one person. Even though this appears to require much effort,

this is done only once and only one person requires to learn the tool’s interface. The advantage

to this is that all of the users that send jobs to a supercomputer can benefit from the collected

performance data; without requiring any user training.

The tool runs with a negligible interference on the running jobs and is, thus, suitable for

permanent systemwide collection of data of large HPC systems. Monitoring without instrumen-

tation greatly reduces the measurement overhead. The analytical codified knowledge without

the use of instrumentation is sufficient for a preliminary detection of bottlenecks.

The definition of properties as specified by the APART Specification Language was modi-

fied for monitoring without instrumentation. The concept of the property value was introduced,

which allows the tool to attain performance data at system level. This in turn, allows to obtain

a comprehensive view of system performance and the changes of performance over time at a
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system level.

The most outstanding advantage of the use of performance properties is that this leads to

a easier and faster interpretation of results than reading the raw hardware counters (no fur-

ther calculations on the data are needed). The revealing of inefficiencies is readily available

by making direct requests to the properties database. On the other hand, severities allow to

recognize the application with the worst bottlenecks. The severity relies on the threshold to

evaluate a Property. Thus, choosing thresholds precisely will ensure the quality of the anal-

ysis. Thresholds were determined with four main heuristics. Firstly, with expert knowledge

combined with knowledge on the hardware characteristics. Thresholds can also be based on

benchmarks. Thirdly, by using a performance degradation policy. Finally, thresholds can be

based on statistical data on measurements done to real applications.

As new technologies emerge and more complex micro-architectures are made available, the

performance patterns become more complex. Subsequently, the strategy maps need to be up-

dated or modified. The general guidelines on how to formulate strategy maps, however, have

been given: limitations inherent to the code, optimizations that have the biggest impact on

performance (i.e., bottlenecks with the highest latencies), and finally identification of the bot-

tlenecks that typically arise more frequently. These guidelines were applied successfully to two

architectures.

Measurements are performed synchronously and collection asynchronously. The advantage

of a synchronous measurement is that it allows the comparison of measurements among prop-

erties and aggregation of measurements in a measurment interval. Synchronous measurements

are important for the load imbalance property and a comprehensive systemwide overview. The

use of quantiles (which can be seen as a data compression) and asynchronous collection allows

the tool to perform an output directly to a database or file system.

Quantiles have proven to be effective in data reduction while still keeping the quality of the

data. They reduce the information of large jobs into manageable amounts.

Estimation of quantiles that need to be used in the context of a tree agent hierarchy preserve

also the quality of the data.

Due to the use of quantiles, two different kinds of aggregations are needed that produce exact

calculations at certain nodes and another type of aggregation that estimates the new set of

quantiles. In order to avoid meta-aggregation of quantiles, the transport system adapts to the

jobs’ topological placement in the supercomputer. Not only are the estimations largely avoided,

but the extraction of data is optimized compared to the traditional extraction that uses the

entire tree topology. This optimization reduces network traffic by processing of information as

locally as possible. The optimized routes also exploit the topology of the tree agent. By having

parent and child agents arrangements with the faster interconnects between them, the extrac-

tion of performance data will also use the faster interconnects. Using specific parts of the tree

rather than its entirety for extracting the data implies that there will be less communication

and less network traffic which then translates into less data loss.
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8.2 Outlook

Future work includes integrating the tasks of the different agent types. If different agent types

are combined into one agent, then the memory footprint will be optimized. A PerSyst Agent

could also serve as a Collector for doing collecting tasks if a PerSyst Agent and a Collector

Agent are placed at the same node.

The agent tree demonstrated to be scalable. However, the scalability into larger systems,

in the order of exascale, will require further optimizations, especially in the communication

times. Optimizations in the algorithms presented can be carried out in order to reduce the time

complexity.

Extensions to the tool include a dedicated strategy map for every field of science. Given that

the strategy to be measured is communicated with the measurement command, the tool could

be easily adapted to support dedicated strategies. The idea behind specialized strategies for

each application type is that they would be more reliable in revealing bottlenecks by preventing

false positives. Moreover, online analysis can be used to apply performance steering in the

user applications. The strategy can be changed at each measurement interval to adapt to the

running applications and focus on one performance pattern when it is deemed as dominating.

For example: the I/O strategies could be more detailed when the tool detects an I/O region,

while other strategies are simply switched off.

In order to alleviate the effort of the system-specific implementations, a sample of delegates will

be provided in which standard Linux tools will be used with its corresponding properties. These

standard delegates will make it possible to deploy the tool by only setting a configuration file.

This will make it possible to have standard measurements without job correlation with almost

no effort for deployment.

Furthermore, the tool will be ported to future HPC architectures. With the deployment of

novel multicore architectures it will require new analysis strategies. In order to make the results

available to users, the visualization (see Appendix A) will be made available to the users.
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The visualization tool is presented in this Anex, showing the performance data of user appli-

cations. The data from the applications are from real production runs on the petaflop system

SuperMUC at the Leibniz Supercomputing Centre. They were taken from the database of the

PerSyst Tool. Figure A.1 shows the visualization of the severities of a list of applications (user

data appears blurred). The severities are shown via a colour codification. Green, yellow, orange,

red, and deep pink correspond to 0, 0.25, 0.5, 0.75, and 1 respectively. Like in a heat map, red

colours represent a higher severity. White spaces mean that no properties were captured.

The severities are shown in a timeline for the time the job was running in Figure A.2. Every

square in the timeline represents a measurment interval and has the same colour codification

as in Figure A.1. The severities along with the timeline are presented for each property. The

property names are listed on the left and the strategy hierarchy is shown with indentations. At

the left of each property name a square with the average severity with respect to cores and time

is shown. Recommendations are shown as a “hint” in the visualization.

Finally, Figure A.3 shows two graphs which allow for comparison of two properties in the

timeline. In this case memory bandwidth an expensive instructions are shown. A coloured line

represents a decile.
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Figure A.1: View of Average Severity for Several Jobs
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Figure A.2: View of Severity for a Single Job in a Timeline
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Figure A.3: View of Property Value in a Timeline
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B
Glossary

ACE Adaptive Communication Environment

APART Automatic Performance Analyisis: Real Tools

API Application Programming Interface

ARITH.CYCLES DIV BUSY

Event counts instruction resulting from division operations.

ARITH.FPU DIV ACTIVE

Event counts instructions due to division.

ASL APART Specification Language

ATS APART Test Suite

AVX Advanced Vector Extensions

BAdW Bayerische Akademie der Wissenschaft

BR INST RETIRED.ALL BRANCHES

Event measures the total amount of branches.

BR MISP RETIRED.ALL BRANCHES

Event measures the mispredicted branches.

CAS COUNT.RD Loaded lines from memory per channel.

CAS COUNT.WR Written lines to memory per channel.

CDR Common Data Representation

CmdReads FVC EV0 BBOX.CMDS READS

CPI Clocks per Instructions

CPU Central Processing Unit

CPU CLK UNHALTED.CORE

Event for the unhalted core cycles,

i.e. the cycles where the core is active.

CPU CLK UNHALTED.REF

Event counts the unhalted reference cycles.

DLB Dynamic Load Balancing

DP FP COMP OPS EXE.SSE DOUBLE PRECISION event

DPCL Dynamic Probe Class Library

DRAM Dynamic Random Access Memory
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FP 256 PACKED SINGLE Event counts AVX floating point operations which corresponds

to the eight packed flops at single precision.

FP 256 PACKED DOUBLE Event counts AVX floating point operations which corresponds

to four packed flops at double precision.

FP COMP OPS EXE.SSE DOUBLE PRECISION

Event counts double precision flops.

FP COMP OPS EXE.SSE FP PACKED

Event counts packed flops.

FP COMP OPS EXE.SSE FP SCALAR

Event counts scalar flops.

FP COMP OPS EXE.SSE SINGLE PRECISION

Event counts single precision flops.

FP COMP OPS EXE SSE FP PACKED DOUBLE

Event counts double precision floating point packed

SSE operations.

FP COMP OPS EXE SSE FP PACKED SINGLE

Event counts single precision floating point SSE operations.

FP COMP OPS EXE SSE FP SCALAR DOUBLE

Event counts the double precision floating point operations.

FP COMP OPS EXE SSE FP SCALAR SINGLE

Event counts the single floating point operations.

FP DP FP COMP OPS EXE SSE FP SCALAR DOUBLE

FP SP FP COMP OPS EXE SSE FP SCALAR SINGLE

FP DPAVX FP 256 PACKED DOUBLE

FP SPAVX FP 256 PACKED SINGLE

FVC EV0 BBOX.CMDS READS

Event for the read commands from memory

GCS Gauss Centre for Supercomputing

GPFS General Parallel File System

HPC High Performance Computing

I/O Input / Output

IA32 Intel 32 bit computer architecture

IA64 Intel 64 bit computer architecture

IMC Integrated Memory Controller

IMT In Memory Table

IMT INSERTS WR Event for the write inserts registered at the In Memory Table.

ImtWrite IMT INSERTS WR

INST RETIRED.ANY Retired instructions event

IPM Integrated Performance Monitoring Tool

JobId Job identification number

KONWIHR Kompetenznetzwerk für Wissenschaftliches
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Höchstleistungsrechnen

L2 all L2 LINES IN.ANY

L2 dirty L2 LINES OUT.DEMAND DIRTY

L2 LINES IN.ANY event counts all the lines loaded into the L2 cache.

L2 LINES OUT.DEMAND DIRTY

Event counts all the lines which have been evicted by demand.

L3 Level three cache

L3 Hits MEM LOAD RETIRED.L3 UNSHARED HIT

L3Hits MEMLOAD UOPS RETIRED.LLC HIT

L3 LAT CACHE.MISS L3 cache misses

L3 Misses MEM LOAD RETIRED.L3 MISS

LLC Last level cache

MEM INST RETIRED.LOADS

Event that counts loads from memory.

MEM INST RETIRED.STORES

Event counts stores to memory.

MEM LOAD RETIRED.L3 MISS

event counts the L3 cache misses.

MEM LOAD RETIRED.L3 UNSHARED HIT

Event counts the L3 level cache hits.

MEM UOP RETIRED.LOADS

Event counts load instructions from memory.

MEM UOP RETIRED.STORES

Event counts store instructions to memory.

MemFree Free memory in a node

MemLoad MEM INST RETIRED.LOADS

MemStore MEM INST RETIRED.STORES

MemTotal Total available memory in a node

MPI Message Passing Interface

MRNet Multicast Reduction Network tool

MSR Model-specific register

NUMA Non-uniform Memory Access

OpenMP Open Multiprocessing

Packed DP FP COMP OPS EXE SSE FP PACKED DOUBLE

Packed SP FP COMP OPS EXE SSE FP PACKED SINGLE

PAPI Performance Application Programming Interface

POWER PKG.WATT RAPL counter that measures package power.

POWER DRAM.WATT RAPL counter that measures DRAM power.

PRACE Partnership for Advanced Supercomputing in Europe

QPI Quick Path Interconnect

QPI RATE STATUS Rate at which QPI is transferring data.
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RAPL Running Average Power Limit

SAR System Activity Report

SIMD Single Instruction Multiple Data

SMT Simultaneous Multithreading

SP FP COMP OPS EXE.SSE SINGLE PRECISION

SSE Streaming SIMD Extension

SyncAgent Synchronization Agent

TAU Tuning and Analysis Utilities

TC Total Cycle Time

TDP Thermal Design Power

UOPS EXECUTED.PORT015 STALL CYCLES

Event count for the micro operations which have stalled

UOPS RETIRED.ANY Event counts for all the micro operations

UT Unix Timestamp

XML Extensible Markup Language
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