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Abstract. This paper proposes a performance tools interface for OpenMP, similar in spirit to the MPI profiling
interface in its intent to define a clear and portable API that makes OpenMP execution events visible to runtime
performance tools. We present our design using a source-level instrumentation approach based on OpenMP direc-
tive rewriting. Rules to instrument each directive and their combination are applied to generate calls to the interface
consistent with directive semantics and to pass context information (e.g., source code locations) in a portable and
efficient way. Our proposed OpenMP performance API further allows user functions and arbitrary code regions to be
marked and performance measurement to be controlled using new OpenMP directives. To prototype the proposed
OpenMP performance interface, we have developed compatible performance libraries for the EXPERT automatic
event trace analyzer [17, 18] and the TAU performance analysis framework [13]. The directive instrumentation trans-
formations we define are implemented in a source-to-source translation tool called OPARI. Application examples
are presented for both EXPERT and TAU to show the OpenMP performance interface and OPARI instrumentation tool
in operation. When used together with the MPI profiling interface (as the examples also demonstrate), our proposed
approach provides a portable and robust solution to performance analysis of OpenMP and mixed-mode (OpenMP +
MPI) applications.

1 Introduction

With the advent of any proposed language system for expressing parallel operation (whether as a true parallel lan-
guage (e.g., ZPL [6]), parallel extensions to sequential language (e.g., UPC [4]), or parallel compiler directives (e.g.,
HPF [9])) questions soon arise regarding how performance instrumentation and measurement will be conducted, and
how performance data will be analyzed and mapped to the language-level (high-level) parallel abstractions. Several
issues make this an interesting problem. First, the language system implements a model for parallelism whose ex-
plicit parallel operation is generally hidden from the programmer. As such, parallel performance events may not be
accessible directly, requiring instead support from underlying runtime software to observe them in full. When such
support is unavailable, performance must be inferred from model properties. Second, the language system typically
transforms the program into its parallel executable form, making it necessary to track code transformations closely
so that performance data can be correctly mapped to the user-level source. The more complex the transformations,
the more difficult the performance mapping will be. Last, high-level language expression of parallelism often goes
hand-in-hand with an interest for cross-platform portability of the language system. Users will naturally desire the
programming and performance tools to be portable as well.

For the performance tool developer, these issues complicate decisions regarding choice of tool technology and
implementation approach. In this paper, we consider the problem of designing a performance tool interface for
OpenMP. Three goals for a performance tool interface for OpenMP are considered:

• Expose OpenMP parallel execution to the performance system.
Here we are concerned about what execution events and state data are observable for performance measure-
ment through the interface.

• Make the interface portable across different platforms and for different performance tools.



Portability in this regard requires the definition of the interface semantics and how information is to be ac-
cessed.

• Allow flexibility in how the interface is applied.
Since OpenMP compilers may implement OpenMP directives differently, including variations in runtime
library operation, the performance interface should not constrain how it is used.

While our study focuses mainly on the instrumentation interface, as that is where events are monitored and the
operational state is queried, clearly the type of performance measurement will determine the scope of analyses
possible. Ideally, the flexibility of the interface will support multiple measurement capabilities.
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Figure 1: OpenMP Parallel Region Operation Showing States and Events

2 A General Performance Model for OpenMP

OpenMP is a parallel programming language system used to express shared memory parallelism. It is based on
the model of (nested) fork-join parallelism and the notion of parallel regions where computational work is shared
and spread across multiple threads of execution (a thread team); see Figure 1. The language constructs provide
for thread synchronization (explicitly and implicitly) to enforce consistency in operation. OpenMP is implemented
using comment-style compiler directives (in Fortran) and pragmas (in C and C++).

A performance model for OpenMP can be defined based on its execution events and states. We advocate multiple
performance views based on a hierarchy of execution states where each level is more refined in focus:

• Level 1: serial and parallel states (with nesting)

• Level 2: work sharing states (per team thread)

• Level 3: synchronization states (per/across team threads)

• Level 4: runtime system (thread) states



In this way, performance observation can be targeted at the level(s) of interest using events specific to the level.
Events are defined to identify points of state transitions (begin/end, enter/exit), allowing OpenMP programs to be
thought of as multi-threaded execution graphs with states as nodes and events as edges. A performance instrumen-
tation interface would allow monitoring of events and access to state information.

Figure 1 shows a diagram of OpenMP parallel region operation. Identified are serial (S) and parallel (P) states,
parallel startup (STARTUP) and shutdown (SHUTDOWN) states, and different events at different levels for master
and slave threads. Based on this diagram, and given a workable performance instrumentation interface, we can
develop measurement tools for capturing serial and parallel performance.

Before After Before After

!$OMP PARALLEL
structured block

!$OMP END PARALLEL

call pomp parallel fork(d)
!$OMP PARALLEL

call pomp parallel begin(d)
structured block
call pomp barrier enter(d)
!$OMP BARRIER
call pomp barrier exit(d)
call pomp parallel end(d)

!$OMP END PARALLEL
call pomp parallel join(d)

!$OMP DO
do loop

!$OMP END DO

call pomp do enter(d)
!$OMP DO

do loop
!$OMP END DO NOWAIT
call pomp barrier enter(d)
!$OMP BARRIER
call pomp barrier exit(d)
call pomp do exit(d)

Before After Before After

!$OMP WORKSHARE
structured block

!$OMP END WORKSHARE

!$OMP BARRIER

call pomp workshare enter(d)
!$OMP WORKSHARE

structured block
!$OMP END WORKSHARE NOWAIT
call pomp barrier enter(d)
!$OMP BARRIER
call pomp barrier exit(d)
call pomp workshare exit(d)

call pomp barrier enter(d)
!$OMP BARRIER
call pomp barrier exit(d)

!$OMP SECTIONS
!$OMP SECTION

structured block
!$OMP SECTION

structured block
!$OMP END SECTIONS

call pomp sections enter(d)
!$OMP SECTIONS
!$OMP SECTION

call pomp section begin(d)
structured block
call pomp section end(d)

!$OMP SECTION
call pomp section begin(d)
structured block
call pomp section end(d)

!$OMP END SECTIONS NOWAIT
call pomp barrier enter(d)
!$OMP BARRIER
call pomp barrier exit(d)
call pomp sections exit(d)

Before After Before After

!$OMP CRITICAL
structured block

!$OMP END CRITICAL

call pomp critical enter(d)
!$OMP CRITICAL

call pomp critical begin(d)
structured block
call pomp critical end(d)

!$OMP END CRITICAL
call pomp critical exit(d)

!$OMP SINGLE
structured block

!$OMP END SINGLE

call pomp single enter(d)
!$OMP SINGLE

call pomp single begin(d)
structured block
call pomp single end(d)

!$OMP END SINGLE NOWAIT
call pomp barrier enter(d)
!$OMP BARRIER
call pomp barrier exit(d)
call pomp single exit(d)

Before After Before After

!$OMP ATOMIC
atomic expression

call pomp atomic enter(d)
!$OMP ATOMIC

atomic expression
call pomp atomic exit(d)

!$OMP MASTER
structured block

!$OMP END MASTER

!$OMP MASTER
call pomp master begin(d)
structured block
call pomp master end(d)

!$OMP END MASTER

Table 1: Proposed OpenMP Directive Transformations.

3 Proposed OpenMP Performance Tool Interface

How should a performance interface be developed to meet the goals for OpenMP? Although different interfaces are
possible (see [5, 10]), the basic idea behind our proposal is to define a standard API to a performance measurement
library that can be used to instrument a user’s OpenMP application program for monitoring OpenMP events. This
instrumentation could be done by a source-to-source translation tool prior to the actual compilation or within an
OpenMP compilation system. Performance tool developers then only need to implement the functions of this inter-



face to enable their tool to measure and analyze OpenMP programs. Different measurement modes (e.g., profiling
[2] and tracing [5, 7, 10]) can easily be accommodated in this way. Hence, the proposed performance interface does
not specify how measurements are performed, only the form of the library interface.

We call the OpenMP performance API the “POMP API” and the corresponding performance library the “POMP
library,” taking after the use of “pmpi” in the definition of the MPI profiling interface. In the following, we present
various aspects of our proposal for a standardized performance tool interface using directive rewriting for its im-
plementation. Fortran90 OpenMP 2.0 syntax is used in examples and tables. The transformations equally apply to
C/C++.

3.1 OpenMP Directive Instrumentation

The POMP API is defined with respect to the semantics of OpenMP operation. Thus, we specify the instrumentation
of OpenMP directives in terms of directive transformations because, first, this allows a description independent of the
base programming language, and second, the specification is tied directly to the programming model the application
programmer understands. Our transformation rules insert calls to pomp NAME TYPE(d) in a manner appropriate
for each OpenMP directive, where NAME is replaced by the name of the directive, TYPE is either fork, join,
enter, exit, begin, or end, and d is a context descriptor (described in Section 3.5). fork and join mark
the location where the execution model switches from sequential to parallel and vice versa, enter and exit flag
the entering and exiting of OpenMP constructs, and, finally, begin and end mark the start and end of structured
blocks used as bodies for the OpenMP directives. Table 1 shows our proposed transformations and performance
library routines. To improve readability, optional clauses to the directives, as allowed by the OpenMP standards, are
not shown.

As can be seen, the type and placement of POMP calls is intended to expose OpenMP events to the underlying
performance measurement system. In some cases, it is necessary to transform the directive in such a way that the
operation can be explicitly captured. For instance, in order to measure the synchronization time at the implicit
barrier at the end of DO, SECTIONS, WORKSHARE, or SINGLE directives, we use the following method:

• If, as shown in the table, the original correspondingEND directive does not include a NOWAIT clause, NOWAIT
is added and the implicit barrier is made explicit.

• If there is a NOWAIT clause in the original END directive, then this step is not necessary.

To distinguish these barriers from (user-specified) explicit barriers, the pomp barrier ###() functions are
passed the context descriptor of the enclosing construct (instead of the descriptor of the explicit barrier).

Unfortunately, this method cannot be used for measuring the barrier waiting time at the end of parallel direc-
tives because they do not come with a NOWAIT clause. Therefore, we add an explicit barrier with corresponding
performance interface calls here. For source-to-source translation tools implementing the proposed transforma-
tions, this means that actually two barriers get called. But the second (implicit) barrier should execute and succeed
immediately because the threads of the OpenMP team are already synchronized by the first barrier. Of course, a
OpenMP compiler can insert the performance interface calls directly around the implicit barrier, thereby avoiding
this overhead.

Transformation rules for the combined parallel work-sharing constructs (PARALLEL DO, PARALLEL SECTIONS,
and PARALLEL WORKSHARE) can be defined accordingly; see Table 2. They are basically the combination of
transformations for the corresponding single OpenMP constructs. The only difference is that clauses specified for
the combined construct have to be distributed to the single OpenMP constructs in such a way that it complies with
the OpenMP standard (e.g., SCHEDULE, ORDERED, and LASTPRIVATE clauses have to be specified with the inner
DO directive).

3.2 OpenMP Runtime Library Routine Instrumentation

To monitor OpenMP runtime library routine calls, the transformation process replaces these calls by calls to the
performance tool interface library. For example, a OpenMP API call to omp set lock() is transformed into a call



Before After

!$OMP PARALLEL DO clauses ...
do loop

!$OMP END PARALLEL DO

call pomp parallel fork(d)
!$OMP PARALLEL other-clauses ...

call pomp parallel begin(d)
call pomp do enter(d)
!$OMP DO schedule-clauses, ordered-clauses,

lastprivate-clauses
do loop

!$OMP END DO NOWAIT
call pomp barrier enter(d)
!$OMP BARRIER
call pomp barrier exit(d)
call pomp do exit(d)
call pomp parallel end(d)

!$OMP END PARALLEL
call pomp parallel join(d)

Before After

!$OMP PARALLEL SECTIONS clauses ...
!$OMP SECTION

structured block
!$OMP END PARALLEL SECTIONS

call pomp parallel fork(d)
!$OMP PARALLEL other-clauses ...

call pomp parallel begin(d)
call pomp sections enter(d)
!$OMP SECTIONS lastprivate-clauses
!$OMP SECTION

call pomp section begin(d)
structured block
call pomp section end(d)

!$OMP END SECTIONS NOWAIT
call pomp barrier enter(d)
!$OMP BARRIER
call pomp barrier exit(d)
call pomp sections exit(d)
call pomp parallel end(d)

!$OMP END PARALLEL
call pomp parallel join(d)

Before After

!$OMP PARALLEL WORKSHARE clauses ...
structured block

!$OMP END PARALLEL WORKSHARE

call pomp parallel fork(d)
!$OMP PARALLEL clauses ...

call pomp parallel begin(d)
call pomp workshare enter(d)
!$OMP WORKSHARE

structured block
!$OMP END WORKSHARE NOWAIT
call pomp barrier enter(d)
!$OMP BARRIER
call pomp barrier exit(d)
call pomp workshare exit(d)
call pomp parallel end(d)

!$OMP END PARALLEL
call pomp parallel join(d)

Table 2: Proposed OpenMP Combined Parallel Work-sharing Directive Transformations.

to pomp set lock(). In the implementation of the performance interface function, the original corresponding
OpenMP runtime library routine must be called. Performance data can be obtained before and after. Currently,
we think it is sufficient to use this procedure for the omp ### lock() and omp ### nest lock() routines
because they are most relevant for the observation of OpenMP performance behavior.

3.3 Performance Monitoring Library Control

In addition to the performance library interface, we propose to add a new directive to give the programmer control
over when the performance collection is done:



!$OMP INST [INIT | FINALIZE | ON | OFF]

For normal OpenMP compilation this directive is ignored. Otherwise, it is translated into calls of pomp init(),
pomp finalize(), pomp on(), and pomp off() calls when performance instrumentation is requested. If
compatibility with existing OpenMP compilers is essential, new directives with the sentinel !$POMP could be used.
Yet another approach (which does not extend the set of OpenMP directives) would be to have the programmer add
the performance tool interface calls directly, but this then requires either stub routines, conditional compilation,
or the removal of the instrumentation to be used when performance monitoring is not desired. Our proposed new
directive approach is more portable, effective, and easier to maintain.

PARALLEL MASTER SINGLE
pomp_parallel_fork(d)
pomp_parallel_begin(d)
pomp_parallel_end(d)
pomp_parallel_join(d)

pomp_master_begin(d)
pomp_master_end(d)

pomp_single_enter(d)
pomp_single_begin(d)
pomp_single_end(d)
pomp_single_exit(d)

DO / FOR WORKSHARE SECTION / SECTIONS
pomp_do_enter(d)
pomp_do_exit(d)

pomp_for_enter(d)
pomp_for_exit(d)

pomp_workshare_enter(d)
pomp_workshare_exit(d)

pomp_sections_enter(d)
pomp_section_begin(d)
pomp_section_end(d)
pomp_sections_exit(d)

BARRIER CRITICAL ATOMIC

pomp_barrier_enter(d)
pomp_barrier_exit(d)

pomp_critical_enter(d)
pomp_critical_begin(d)
pomp_critical_end(d)
pomp_critical_exit(d)

pomp_atomic_enter(d)
pomp_atomic_exit(d)

Runtime Library Control User Code
pomp_set_lock()
pomp_unset_lock()
pomp_set_nest_lock()
pomp_unset_nest_lock

pomp_init()
pomp_finalize()
pomp_on()
pomp_off()

pomp_begin()
pomp_end()

Table 3: POMP OpenMP Performance API.

3.4 User Code Instrumentation

For large application programs it is usually not sufficient to just collect OpenMP related events. The OpenMP
compiler should also insert appropriate pomp begin() and pomp end() calls at the beginning and end of each
user function. In this case the context descriptor describes the user function. In addition, users may desire to mark
arbitrary (non-function) code regions. This can be done with a directive mechanism similar to that described in the
last subsection, such as

!$OMP INST BEGIN ( <region_name> )
arbitrary user code

!$OMP INST END ( <region_name> )

The directives are translated into pomp begin() and pomp end() calls. Again, techniques can be used to
avoid defining new directives, but with the same disadvantages as described in the last section. Furthermore, the



transformation tool / compiler cannot generate the context descriptor for this user defined region in this case, so
another (less efficient) mechanism would have to be used here.

The full proposed OpenMP performance API is shown in Table 3.

3.5 Context Descriptors

An important aspect of the performance instrumentation is how the performance tool interface routines get access to
context information, in order to relate the collected performance information back to the source code and OpenMP
constructs. We propose the following. For each instrumented OpenMP construct, user function, and user-specified
region, the instrumentor generates a context descriptor in the global static memory segment of the compilation unit
containing the construct or region. All monitoring function calls related to this construct or region are passed the
address of this descriptor (called d in Tables 1 and 2). The proposed definition of the context descriptor (in C syntax)
is shown below:

typedef struct ompregdescr {
char* name;
char* sub_name;
int num_sections;
char* file_name;
int begin_line1, begin_lineN;
int end_line1, end_lineN;
WORD data[4];
struct ompregdescr* next;

} OMPRegDescr;

The fields of the context descriptor have the following meaning: name contains the name of the OpenMP construct
or the string "region" for user functions and regions. sub name stores the name of named critical regions or
the name of user functions and regions. In case of the sections OpenMP directives, num sections provides
the number of sections, otherwise it is set to 0. The next five fields (file name, begin line1, begin lineN,
end line1, end lineN) describe the source code location of the OpenMP construct or user region: the source
file name, and the first and last line number of the opening and of the corresponding END OpenMP directive. The
field data can be used by the performance tool interface functions to store performance data related to this construct
or region (e.g., counters or timers). Finally, the next component allows for chaining context descriptors together at
runtime, so that at the end of the program the list of descriptors can be traversed and the collected performance data
can be stored away and analyzed.

This approach has many advantages over other methods (e.g., using unique identifiers):

1. Full context information, including source code location, is available to the performance tool interface func-
tions.

2. Runtime overhead for implementing this approach is minimal. Only one address is passed as an argument. In
addition, providing space for storing performance data (in the form of the data field), the performance tool
interface functions do not need to dynamically allocate memory for this purpose (which is very costly).

3. The context data is kept together with the (instrumented) executable so it avoids problems of locating (the
right) separate context description file(s) at runtime.

4. Finally, it allows for separate compilation. This is important for today’s large complex application codes.

3.6 Conditional Compilation

We also propose to support user source code lines to be compiled conditionally if POMP instrumentation is requested.
If the OpenMP compiler or POMP transformation tool supports a macro preprocessor (e.g. cpp for C, C++, and
sometimes Fortran), it must define the symbol POMP to be used for conditional compilation. Following OpenMP
standard conventions, this symbol is defined to have the decimal value YYYYMM where YYYY and MM are the year
and month designations of the version of the POMP API that the implementation supports. This allows users to
define and use application-, user-, or site-specific extensions to POMP by writing:



#ifdef POMP
arbitrary user code

#endif

The !P$ sentinel can be used for conditional compilation in Fortran compilation or transformation systems. In
addition, CP$ and *P$ sentinels are accepted only when instrumenting Fortran fixed source form. During POMP
instrumentation, these sentinels are replaced by three spaces, and the rest of the line is treated as a normal Fortran
line. These sentinels also have to comply with the specifications defined in the Sections 2.1.3.1 and 2.1.3.2 of the
OpenMP Fortran Application Program Interface, Version 2.0, November 2000.

3.7 Conditional / Selective Transformations

Finally, to allow a user to (temporarily) disable the POMP instrumentation process for specific files or parts of files,
we propose to provide the following new directives:

!$OMP NOINSTRUMNENT
!$OMP INSTRUMNENT

(or !$POMP ..., as necessary) which disable and re-enable POMP instrumentation (similar to common existing
compiler directives for disabling optimizations). POMP instrumentation disabled by !$OMP NOINSTRUMENT is
in effect until end of file or until the next !$OMP INSTRUMENT whichever comes first.

3.8 C/C++ OpenMP Pragma Instrumentation

The transformations for Fortran OpenMP directives described in Tables 1 and 2 apply equally to C/C++ OpenMP
pragmas. The main difference is that the extent of C/C++ OpenMP pragmas is determined by the structured block
following it, and not by an explicit END pragma as in Fortran. This has the following consequences for pragma
instrumentation:

• Instrumentation for the “closing” part of the pragma follows the structured block.
• Adding a nowait clause (to allow the make implicit barriers explicit) has to be done for the “opening” part

of the pragma.
• The structured block of a C/C++ OpenMP pragma (#pragma omp ###) will be transformed by wrapping

it with pomp ### begin(d) and pomp ### end(d) calls which in turn are enclosed in a block (i.e.,
using {...}).

All other changes are simple differences in language (e.g., no call keyword and using #pragma omp instead of
!$OMP). The new monitoring control and user code instrumentation would appear as:

#pragma omp inst [init | finalize | on | off]

#pragma omp inst begin ( <region_name> )
arbitrary user code

#pragma omp inst end ( <region_name> )

#pragma omp noinstrument
#pragma omp instrument



3.9 Implementation Issues

It is clear that an interface for performance measurements must be very efficient and must minimize its influence on
the dynamic behavior of the user code under investigation. We designed our POMP library interface with efficiency
in mind from the very beginning:

• We choose to define a larger set of performance monitoring API functions according to the pattern

pomp TYPE NAME(descr)

instead of using an interface like

pomp event(POMP TYPE, POMP NAME, filename, linenumber, value, ...)

which would have been much simpler to implement. But it would make it necessary to use costly IF or
SWITCH statements inside the pomp event routine, resulting in run-time overhead.

• Argument passing overhead is minimized (while still supporting full context information) by using context
descriptors. This was already discussed in Section 3.5.

• If further optimization is required, inlining of the POMP interface calls through the use of macros would be
possible. In C/C++, this is possible without any changes to the proposal as outlined above as the function call
and macro call syntax is the same. Fortran OpenMP instrumentation only requires the generation of the CALL
keyword during OpenMP directive transformation to be suppressed. However, the structure of a single POMP
call is so simple (i.e., a function call with one constant argument) that current compiler technology should be
able to inline the calls without the “manual” use of macros.

• The granularity of OpenMP constructs can be much finer than, for example, MPI functions. This is especially
true for the ATOMIC, CRITICAL, MASTER, and SINGLE OpenMP constructs as well as for the OpenMP
API functions for locking. Implementers of the POMP interface must take special care when implementing
the corresponding POMP functions. In addition, we propose that the instrumentation of these constructs can
be selectively disabled by specifying the following command line option to the OpenMP compiler or POMP
transformation tool:

--pomp-disable=construct[,construct ...]

where construct is the name of one OpenMP construct listed above or "sync" to disable all of them. Finally,
if the instrumentation of these (or other) constructs is critical only in specific parts of the code, our !$OMP
NOINSTRUMENT directive (see Section 3.7) can be used to disable them selectively.

3.10 Open Issues

While we think that the proposal outlined so far is reasonably complete, there are additional issues which need
further discussion. Here, we try to briefly summarize the issues we are aware of:

• Do we need instrumentation for the OpenMP ORDERED and FLUSH?

• Do we need instrumentation of single iterations of PARALLEL DO (parallel for) loops? This would
potentially allow the influence of OpenMP loop iteration scheduling policies to be measured, but only when
iterations are of a sufficient granularity.

• Do we need a way to allow users to pass additional information to the POMP interface? Besides using POMP
conditional compilation (see Section 3.6), we might consider extending the !$OMP INST BEGIN and END
directive (see Section 3.4) to optionally allow to pass the address of a user variable:

!$OMP INST BEGIN ( <region_name> [, <variable>] )
arbitrary user code

!$OMP INST END ( <region_name> [, <variable>] )



The pomp begin and pomp end routines would have an additional void* typed second parameter which
would be NULL if the user did not specify a variable. This way, the user could pass additional information to
the POMP API functions, which would be ignored in general implementations but could be utilized in (user-
supplied) special versions. It is also possible to allow passing user information to the other (all) POMP API
functions, but this requires further directives / pragmas.

• Do we need additional OpenMP runtime level instrumentation or is it enough to observe OpenMP behavior
on the source code level?

4 Prototype Implementation

To integrate performance tools with the proposed OpenMP performance interface, two issues must be addressed.
First, the OpenMP program must be instrumented with the appropriate performance calls. Second, a performance
library must be developed to implement the OpenMP performance API for the particular performance tool. The
following describes how two performance tools, EXPERT and TAU have been integrated with the proposed OpenMP
performance interface. In each case, both OpenMP applications and hybrid (OpenMP+MPI) applications are sup-
ported. The latter demonstrates the ability to combine the OpenMP performance interface with other performance
interface mechanisms in a seamless manner.

4.1 Automatic Instrumentation

As a proof of concept and a means for experimentation, we implemented OPARI (OpenMP Pragma And Region
Instrumentor). It is a source-to-source translator which performs the OpenMP directive and API call transforma-
tions described in this paper, including the new proposed directives and !$POMP INST alternative sentinel. The
current prototype implements full Fortran77 and Fortran90 OpenMP 2.0 and full C/C++ OpenMP 1.0 support. The
instrumentation of user functions (based on PDT [12]) is under way. The tool consists of about 2000 lines of C++
code.

Being just a source-to-source translator based on a (very) fuzzy parser, and not a full compiler, OPARI has a few
small limitations:

Fortran

• The !$OMP END DO and !$OMP END PARALLEL DO directives are required (not optional, as described
in the OpenMP standard).

• The atomic expression controlled by a !$OMP ATOMIC directive has to be on a line all by itself.

C/C++

• Structured blocks describing the extent of an OpenMP pragma need to be either compound statements ({...}),
or simple statements. In addition, for loops are supported only after omp for and omp parallel for
pragmas.

• Complex statements like if-then-else or do-while need to be enclosed in a block ({...}).

We did not find these limitations overly restrictive during our tests and experiments. They rarely apply for well-
written code. If they do, the original source code can easily be fixed. Of course, it is possible to remove these
limitations by enhancing OPARI’s parsing capabilities.

Finally, if the performance measurement environment does not support the automatic recording of user functions
entries and exits, and therefore cannot automatically instrument the program’s main function, the OPARI runtime
measurement library has to be initialized by a !$OMP INST INIT directive / pragma prior to any other OpenMP
pragma.

4.2 Integration into EXPERT

The EXPERT tool environment [17, 18] is aimed at automatically uncovering performance problems in event traces
of MPI, OpenMP, or hybrid applications running on complex, large SMP clusters. The work on EXPERT is carried



out within the KOJAK project [11] and is a part of the ESPRIT working group APART [1].

EXPERT analyzes the performance behavior along three dimensions: performance problem category, dynamic call
tree position, and code location. Each of the analyzed dimensions is organized in a hierarchy. Performance problems
are organized from more general (“There is an MPI related problem”) to very specific ones (“Messages sent in
wrong order”). The dynamic call tree is a natural hierarchy showing calling stack relationships. Finally, the location
dimension represents the hierarchical hardware and software architecture of SMP clusters consisting of the levels
machine, node, process, and thread.

The range of performance problems known to EXPERT are not hard-coded into the tool but are provided as a col-
lection of performance property specifications. This makes EXPERT extensible and very flexible. A performance
property specification consists of

• a compound event (i.e., an event pattern describing the nature of the performance problem),
• instructions to calculate the so-called severity of the property, determining its influence on the performance of

the analyzed application,
• its parent performance property, and
• instructions on how to initialize the property and how to display collected performance data or property related

results.

Performance property specifications are abstractions beyond simple performance metrics, allowing EXPERT to ex-
plain performance problems in terms of the underlying programming model(s). Specifications are written in the
event trace analysis language EARL [16], an extension of the Python scripting language. EARL provides efficient ac-
cess to an event trace at the level of the abstractions of the parallel programming models (e.g., region stack, message
queue, or collective operation) making it easy to write performance property specifications.

EXPERT’s analysis process relies on event traces as performance data source. Event traces preserve the temporal
and spatial relationship among individual events, and they are necessary to prove certain interesting performance
properties. Event traces are recorded in the newly designed EPILOG format that, in contrast to traditional trace data
formats, is suitable to represent the executions of MPI, OpenMP, or hybrid parallel applications being distributed
across one or more (possibly large) clusters of SMP nodes. It supports storage of all necessary source code and call
site information, hardware performance counter values, and marking of collectively executed operations for both
MPI and OpenMP. The implementation of EPILOG is thread safe, a necessary feature not always present in most
traditional tools.

Traces can be generated for C, C++, and Fortran applications just by linking to the EPILOG tracing library. To
intercept user function calls and returns, we use the internal profiling interface of the PGI compiler suite [15] being
installed on our LINUX SMP cluster testbed. For capturing OpenMP events, we implemented the pomp library
functions in terms of EPILOG tracing calls, and then use OPARI to instrument the user application. For example, the
omp for enter() and omp for exit() interface implementation for instrumentation of the #pragma omp
parallel for directive for C/C++ would look like the following in EPILOG:

void pomp_for_enter(OMPRegDescr* r) {
struct ElgRegion* e;
if (! (e = (struct ElgRegion*)(r->data[0])))

e = ElgRegion_Init(r);
elg_enter(e->rid);

}

void pomp_for_exit(OMPRegDescr* r) {
elg_omp_collexit();

}

What is important to notice is how the region descriptor is utilized to collect performance data per OpenMP con-
struct. For hybrid applications using OpenMP and MPI, MPI-specific events can also be generated by a appropriate
wrapper function library utilizing the MPI standard profiling interface.



4.3 Integration into TAU

The TAU performance system [13] provides robust technology for performance instrumentation, measurement, and
analysis for complex parallel systems. It targets a general computation model consisting of shared-memory nodes
where contexts reside, each providing a virtual address space shared by multiple threads of execution. The model is
general enough to apply to many high-performance scalable parallel systems and programming paradigms. Because
TAU enables performance information to be captured at the node/context/thread levels, this information can be
mapped to the particular parallel software and system execution platform under consideration.

TAU supports a flexible instrumentation model that allows access to a measurement API at several stages of pro-
gram compilation and execution. The instrumentation identifies code segments, provides for mapping of low-level
execution events to high-level computation entities, and works with multi-threaded and message passing parallel
execution models. It interfaces with the TAU measurement model that can capture data for function, method, basic
block, and statement execution. Profiling and tracing form the two measurement choices that TAU provides. Per-
formance experiments can be composed from different measurement modules, including ones that access hardware
performance monitors. The TAU data analysis and presentation utilities offer text-based and graphical tools to vi-
sualize the performance data as well as bridges to third-party software, such as Vampir [14] for sophisticated trace
analysis and visualization.

As with EXPERT, TAU implements the OpenMP performance API in a library that captures the OpenMP events and
uses TAU’s performance measurement facility to record performance data. For example, the POMP implementation
of the same functions as in Section 4.2 would look like the following in TAU:

TAU_GLOBAL_TIMER(tfor,‘‘for enter/exit’’, ‘‘[OpenMP]’’,OpenMP);

void pomp_for_enter(OMPRegDescr* r) {
#ifdef TAU_AGGREGATE_OPENMP_TIMINGS
TAU_GLOBAL_TIMER_START(tfor);

#endif
#ifdef TAU_OPENMP_REGION_VIEW
TauStartOpenMPRegionTimer(r);

#endif
}

void pomp_for_exit(OMPRegDescr* r) {
#ifdef TAU_AGGREGATE_OPENMP_TIMINGS
TAU_GLOBAL_TIMER_STOP();

#endif
#ifdef TAU_OPENMP_REGION_VIEW
TauStopOpenMPRegionTimer(r);

#endif
}

TAU supports construct-based as well as region-based performance measurement. Construct-based measurement
uses globally accessible timers to aggregate construct-specific performance cost over all regions. In the case of
region-based measurement, like EXPERT, the region descriptor is used to select the specific performance data for
that context. Following this instrumentation approach, all of TAU’s functionality is accessible to the user, including
the ability to select profiling or tracing, enable hardware performance monitoring, and add MPI instrumentation for
performance measurement of hybrid applications.

5 Example Applications

To demonstrate the viability and robustness of the proposed interface and instrumentation tools we have developed,
the OPARI tool and the pomp libraries for EXPERT and TAU are applied to example mixed-mode (OpenMP + MPI)
applications. These types of application present an analysis challenge for performance tools because of the need to
capture and present performance data for different parallel modes and their interaction.



Figure 2: EXPERT Performance Analysis of OpenMP/MPI Weather Forecasting Application Instrumented
with OPARI

5.1 Weather Forecasting

The REMO weather forecast application from the DKRZ (Deutsches Klima Rechenzentrum, Germany) is an ex-
cellent testcase for the performance API. The code is instrumented using OPARI for OpenMP events and the MPI
profiling library for MPI events. The measurement system uses the EPILOG tracing facility, with the POMP library
calling EPILOG trace routines, as described above. The EXPERT system then processes the events traces and displays
the performance analysis results.

In EXPERT, the presentation of the results is also based on three dimensions: performance problem, call graph,
location. Each dimension is displayed using weighted trees. A weighted tree is a tree browser that labels each
node with a weight. EXPERT uses the performance property’s severity as this weight. The weight is displayed
simultaneously using both a numerical value as well as a color coded icon. The color allows to identify nodes of
interest easily even in a large tree. By expanding or collapsing any of the three trees it is possible to analyze the
performance behavior of a parallel application on different levels of granularity.

We see some of this interactive analysis in Figure 2 and 3. The three tree views are shown. The first view lists the
different performance properties. The numbers at the nodes show the percentage of CPU allocation time spent on
that property or lost as a result of that property. When the node is collapsed, the inclusive value is shown, when it is
expanded only its exclusive value. Colors represent the numeric value graphically.

Figure 2 shows that 50% of CPU allocation time was lost as a result of sequential execution or was “used by idle
slave threads.” Although idle threads do not execute any code, the idle time is mapped to the middle (call tree) view
(i.e., the idle slave threads are considered to be executing the same code as the corresponding master threads). This
allows the user to find code regions that spent a very long time on sequential execution. The numbers in the middle
view refer to the selection in the left view, so 73.5% of the 50.0% are spent in /remo/ed4org/progec4.



Figure 3: Barrier Performance Analysis of REMO

The right view shows the distribution of idle times across the different threads. Here all values refer to the selection
in the left neighbor, so the sum of all values correspond to the 73.9% from the middle view. Of course, only the
slave threads have idle times, the master thread shows always 0.0%.

Figure 3 refers to the property “OpenMP Barrier.” The call tree shows that nearly all barrier time is spent on an
implicit barrier (!$omp ibarrier) belonging to a parallel do (!$omp do). The distribution of overhead across
the different threads is shown in the right view.

5.2 Ocean Circulation

To demonstrate the use of the OpenMP performance tool interface with TAU, we applied it to a two-dimensional
Stommel ocean current application from the San Diego Supercomputing Center. The application code models wind-
driven circulation in a homogeneous rectangular ocean under the influence of surface winds, linearized bottom
friction, flat bottom, and Coriolis force. A 5-point stencil is used to solve partial differential equation on a grid of
points. Table 4 shows the source code for a more compute-intensive for block, before and after instrumentation
with OPARI. By linking with the TAU-specific pomp library and a user-configured TAU measurement package, the
performance data for OpenMP and MPI events can be captured and displayed.

Figure 4 presents profiling data for the Stommel application. Shown is a region-based performance view where
individual parallel loops are distinguished. The for block shown in Table 4 is highlighted in the “n,c,t 0,0,0
profile” display (representing node 0, context 0, and thread 0) and is seen to take a significant percentage of time to
execute. The execution time for this block across all threads is shown in the “for

OpenMPlocation : file.stommel.c < 252, 260 >



Original code block

#pragma omp for schedule(static) reduction(+: diff) private(j)
firstprivate (a1,a2,a3,a4,a5)

for(i=i1;i<=i2;i++) {
for(j=j1;j<=j2;j++){

new_psi[i][j]=a1*psi[i+1][j] + a2*psi[i-1][j] + a3*psi[i][j+1] + a4*psi[i][j-1]
- a5*the_for[i][j];

diff=diff+fabs(new_psi[i][j]-psi[i][j]);
}

}

Code block after OPARI instrumenation

pomp_for_enter(&omp_rd_2);
#line 252 "stommel.c"
#pragma omp for schedule(static) reduction(+: diff) private(j)

firstprivate (a1,a2,a3,a4,a5) nowait
for(i=i1;i<=i2;i++) {

for(j=j1;j<=j2;j++){
new_psi[i][j]=a1*psi[i+1][j] + a2*psi[i-1][j] + a3*psi[i][j+1] + a4*psi[i][j-1]

- a5*the_for[i][j];
diff=diff+fabs(new_psi[i][j]-psi[i][j]);

}
}

pomp_barrier_enter(&omp_rd_2);
#pragma omp barrier
pomp_barrier_exit(&omp_rd_2);
pomp_for_exit(&omp_rd_2);

Table 4: Directive Instrumentation for Stommel Code.

profile” display. Clearly, there is a work imbalance between the two threads within each process, but the distribution
is consistent across nodes (i.e., processes). Notice how the MPI performance data is integrated with the OpenMP
data in the display. It is also possible for TAU to be used to obtain construct-based performance data.

By linking the Stommel application with a trace-configured performance library, OpenMP and MPI events can be
displayed using the Vampir [14] visualization tool. Figure 5 displays an event timeline showing the overlaps of
OpenMP and MPI events.

6 Related Work

Given the interest in OpenMP in the last few years, several research efforts have addressed performance measure-
ment and analysis of OpenMP execution, but none of these efforts have considered a common performance tool
interface in the manner proposed in this paper. The OVALTINE tool [2] helps determine relevant overheads for a
parallel OpenMP program compared to a serial implementation. It uses the Polaris Fortran 77 parser to build a basic
abstract syntax tree which it then instruments with counters and timers to determine overheads for various OpenMP
constructs and code segments. The nature of the OVALTINE performance measurements suggests that our OpenMP
performance API could be applied directly to generate the OpenMP events of interest, allowing greater range to
performance tools for use in overhead analysis.

OMPtrace [5] is a dynamic instrumentation package used to trace OpenMP execution on SGI and IBM platforms.
It provides for automatic capture of OpenMP runtime system (RTS) events by intercepting calls to the RTS library.
User functions can also be instrumented to generate trace events. The main advantage of OMPtrace is that there is
no need to re-compile the OpenMP program for performance analysis. In essence, OMPtrace uses the RTS interface
as the performance tool interface, relying on interception at dynamic link time for instrumentation. Unfortunately,
this approach relies on OpenMP compiler transformations that turn OpenMP constructs into function calls, and on
dynamic shared library operation. To bypass these restrictions, the OpenMP performance interface we propose could



Figure 4: TAU Performance Profile of an OpenMP/MPI 2D Stommel Model of Ocean Circulation Instru-
mented with OPARI

provide a suitable target for the performance tracing part of OMPtrace. A compatible POMP library would need to
be developed to generate equivalent OMPtrace events and hardware counter data. In this manner, the Paraver [7]
tool for analysis and visualization of OMPtrace data could be used without modification.

The VGV tool combines the OpenMP compiler tools (Guide, GuideView) from KAI with the Vampir/Vampirtrace
tracing tools from Pallas for OpenMP performance analysis and visualization. OpenMP instrumentation is provided
by the Guide compiler for both profiling and tracing, and the Guide runtime system handles recording of thread
events. Being compiler-based, the monitoring of OpenMP performance can be quite detailed and tightly integrated
in the execution environment. However, the lack of an external API prevents other performance tools for observing
OpenMP execution events. The performance interface we proposed could be applied in the VGV context in the
same manner as above. The pomp calls could be implemented in a library for VGV, mapping the OpenMP actions to
Vampir state transition calls at appropriate points. Another approach might be to have the Guide compiler generate
the POMP instrumentation, allowing other pomp-compatible performance interface libraries to be used.

Lastly, the JOMP [3] system is a source-to-source compiler that transforms OpenMP-like directives for Java to
multi-thread Java statements that implement the equivalent OpenMP parallel operations. It has similarities to our
work in that it supports performance instrumentation as part of its directive transformation [8]. This instrumentation
generates events for analysis by Paraver [7]. In a similar manner, the JOMP compiler could be modified to generate
pomp calls. In this case, since JOMP manages its own threads to implement parallelism, it may be necessary to
implement runtime support for POMP libraries to access thread information.



Figure 5: TAU Performance Trace of Stommel Application

7 Conclusion and Future Work

This paper proposes a portable performance interface for OpenMP to aid in the integration of performance tools in
OpenMP programming environments. Defined as a library API, the interface exposes OpenMP execution events
of interest (e.g., sequential, parallel, and synchronization events) for performance observation, and passes OpenMP
context descriptors to inform the performance interface library of region-specific information. Because OpenMP
uses compiler directives (pragmas) to express shared memory parallelism, our definition of the performance tool
API must be consistent with the operational semantics of the directives. To show how this is accomplished, we
describe how the API is used in rewriting OpenMP directives in functionally equivalent, but source-instrumented
forms. The OPARI tool can perform this OpenMP directive rewriting automatically, inserting POMP performance
calls where appropriate.

The benefits of the proposed performance interface are several. First, it gives a performance API target for source-
to-source instrumentation tools (e.g., OPARI), allowing for instrumented OpenMP codes that are portable across
compilers and machine platforms. Second, the performance library interface provides a target for tool developers
to port performance measurement systems. This enables multiple performance tools to be used in OpenMP per-
formance analysis. We show how this is accomplished for EXPERT and TAU by redefining the pomp calls. Third,



the API also offers a target for OpenMP compilers to generate POMP calls that can both access internal, compiler-
specific performance libraries and external performance packages. Finally, if the OpenMP community could adopt
an OpenMP performance interface such as the one we proposed, it would significantly improve the integration and
compatibility between compilers and performance tools, and, perhaps more importantly, the portability of perfor-
mance analysis techniques.

In the future, we hope to work with the OpenMP ARB to promote the definition for a performance tool API,
offering our proposal here for consideration. We will enhance the OPARI source-to-source instrumentation approach
with support for user function instrumentation using PDT [12]. Other opportunities are also possible with the
integration of the API in OpenMP compilers and the use of other performance technologies for instrumentation and
measurement. We hope to work with KAI and Pallas to investigate the use of our proposed performance tool interface
in the KAP/Pro Guide compiler with Vampirtrace as the basis for the POMP performance library implementation.
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