
VampirServer

User Manual

Copyright
c© 2011 GWT-TUD GmbH

Blasewitzer Str. 43
01307 Dresden, Germany

http://gwtonline.de

Support / Feedback / Bug Reports
Please provide us feedback! We are very interested to hear what people like,
dislike, or what features they are interested in.

If you experience problems or have suggestions about this application or manual,
please contact service@vampir.eu.

When reporting a bug, please include as much detail as possible, in order to
reproduce it. Please send the version number of your copy of VampirServer
along with the bug report.

Please visit http://vampir.eu for updates and new versions.

service@vampir.eu
http://vampir.eu

Manual Version
VampirServer 7.5.0 / November 28, 2011

ii

http://gwtonline.de
mailto:service@vampir.eu
http://vampir.eu
mailto:service@vampir.eu
http://vampir.eu

Contents

Contents

1. Introduction 1

2. Installation 3

3. Vampir Server 7
3.1. Using the Standard Control Interface 7

3.1.1. Obtaining a Command Overview (help) 7
3.1.2. Starting a New Server Instance (start) 8
3.1.3. Stopping an Existing Server Instance (stop) 10
3.1.4. Listing Server Related Information (list) 11
3.1.5. Configuring the Server (config) 11
3.1.6. Command Line Reference 13

3.2. Connecting Vampir to VampirServer 14
3.2.1. SSH Tunneling . 14

3.3. Using the Back-End Control Interface 16
3.3.1. Manual Invocation . 16
3.3.2. Environment Variables . 18

3.4. Customizing Launch Scripts . 19

4. Vampir Proxy 21
4.1. Prerequisites . 21
4.2. Starting a Proxy Session . 22
4.3. Connecting to a VampirServer Remote Station 23
4.4. Launching VampirServer via VampirProxy 24

A. Appendix 27
A.1. Default MPI Launch Script . 27
A.2. MPI Launch Script with LSF Support 29

iii

CHAPTER 1. INTRODUCTION

1. Introduction

VampirServer is a software tool for analyzing the run-time behavior of parallel
software programs. It visualizes the program execution by means of event traces,
gathered by monitoring software like VampirTrace, Score-P, Scalasca, or TAU.
The visualization takes place after the completion of the monitored program, by
using data that has been captured during the program execution and stored in
so-called trace files.

VampirServer is based on parallelized analysis algorithms. Data analysis and
visualization are implemented as a client-server framework. The server compo-
nent can be installed on a segment of a parallel production environment. The
corresponding clients visualize the performance results graphically on remote
desktop computers. Major advantages of this parallel and distributed approach
are:

1. Performance data which tends to be bulky is kept at the location where it
was created.

2. Parallel data processing significantly increases the scalability of the analy-
sis process.

3. The applied performance analysis paradigm is easy to handle and works
efficiently from arbitrary remote end-user platforms.

4. Very large trace files can be browsed and visualized interactively.

VampirServer translates a program’s performance data into a variety of graph-
ical representations providing developers with a good understanding of perfor-
mance issues concerning their parallel and serial applications. VampirServer en-
ables quick focusing on appropriate levels of detail which facilitates the detection
and explanation of various performance bottlenecks such as load imbalances
and communication deficiencies. This documentation is intended to be used
both as a startup guide and as reference manual.

1

CHAPTER 2. INSTALLATION

2. Installation
The platform specific executables for server and client, as well as their corre-
sponding license files, are needed so as to run the VampirServer tool. Server
and client are available in platform specific installation packages. Please, contact
sales@vampir.eu for the purchase of software licenses. Once you obtained
the installation files proceed with the following steps:

1. Start the VampirServer Installer by typing

$ vampirserver-7.5.0-<platform>-setup.bin

on your command line. You will be asked a few questions. Default answers
to these questions are provided in brackets. Please confirm the default
answers by pressing the enter key on your keyboard. Alternatively, you
can enter the appropriate settings for your compupter system. Contact
your system’s administrator if you are not sure about the right answers.

The VampirServer Installer copies the software into the directory <install-
dir>. By default, <install-dir> is set to /opt/local/vampir-7.5.0 if installed
with root permissions or $HOME/vampir-7.5.0 otherwise. After a success-
ful installation, the following files reside in <install-dir>:

INSTALL.txt
bin/

vampir-proxy
vampirserver
vampirserver-core
vampirserver-shutdown

doc/
vampirserver-manual.pdf
vampirserver-release-notes.txt

etc/
proxy/
server/

etc/proxy/
agent
config

etc/server/launcher/
lsf

3

sales@vampir.eu

mpi
smp

lib/
driver/

lib/driver/
config.h
MpiModCore.c
MpiModDef.h
MpiModProto.h

In case of a configuration error, detailed error messages can be found in
<install-dir>/vampirserver-config.log .

2. Adjust the system environment variable PATH as follows:

$ export PATH=$PATH:<install-dir>/bin

Make sure that this variable is set accordingly whenever you want to use
VampirServer. This can be achieved by adding the above line to your lo-
gin scripts or by creating an appropriate software module for the software.
Contact your local system administrator for further details.

3. Copy the license file vampir.license that you received separately to <install-
dir>/etc/ and make sure that it is readable (i. e. the right permissions bits
are set) for all users and writable (!) for the user who is doing the setup
procedure. See Section 3.3.2 for further details.

4. Start the VampirServer program with:

$ vampirserver start smp

This should result in a message similar to the following:

Launching VampirServer...
Estimating the number of processing elements
↪→ (overwrite with -n option)...
VampirServer 7.5.0
Licensed to Fred Flintstone, Slate Rock and [...]
Running 4 analysis processes...
↪→ (abort with vampirserver stop 12991)
VampirServer 12991 listens on: bedrock:30000

Certain Vampir license types require to be activated for individual comput-
ers. If this is the case for your license, VampirServer will print out the
following message instead:

4

CHAPTER 2. INSTALLATION

Launching VampirServer...

Dear customer, your license needs to be activated ...
Please, visit http://vampir.eu/activation ...

-----BEGIN REGISTRATION-----
LicenseId: 7592bbc4c9
Serial: 1146eca05c49d4b6b74a3daf5b046e92332930aa
-----END REGISTRATION-----

An activation file, named vampir.activation ...
Error: Could not start VampirServer.

Please visit http://vampir.eu/activation in order to obtain a li-
cense activation code file. Alternatively, send the printed registration in-
formation in an e-mail to service@vampir.eu. In both cases, an activa-
tion code file will be sent to you by e-mail. Copy the activation file vam-
pir.activation to <install-dir>/etc/ and start over at this item.

5. Start the Vampir visualization program, which has to be installed inde-
pendently from VampirServer. Establish a connection to VampirServer
from within the visualization program by clicking on Menu→File→Open Re-
mote... . Complete the input fields Server and Port. If both Vampir and
VampirServer are executed on the same computer system you would typi-
cally have to enter localhost and a port number between 30000 and 30099.
VampirServer’s startup output

VampirServer 12991 listens on: bedrock:30000

assists you in finding the right connection parameters. It tells you exactly
on which host VampirServer runs and to which port it listens.

The progress and status of the connection setup is indicated in the Vampir
performance visualizer. Once it is connected to a VampirServer instance,
its usage is identical to the stand-alone Vampir program. Please consult
the Vampir user manual for further reading.

6. Do further optional customization. The process of launching the Vam-
pirServer core program (vampirserver-core) is slightly platform dependent.
The necessary parameters and environment variables are normally set au-
tomatically by the standard control interface (vampirserver), which makes
use of launch scripts located in <install-dir>/etc/server/launcher. If nec-
essary, these scripts can be complemented with system specific settings
like specific MPI or batch parameters. Please note that this procedure ad-
dresses system administrators or experienced users.

5

http://vampir.eu/activation
service@vampir.eu

CHAPTER 3. VAMPIR SERVER

3. Vampir Server

3.1. Using the Standard Control Interface

VampirServer is a parallel program that supports both distributed and shared
memory computer systems. Unfortunately, the startup procedure of parallel pro-
grams on high performance computers is somewhat platform dependent. There-
fore, VampirServer is shipped with a standard control interface that takes care
of all platform dependent settings. The control interface is a command line pro-
gram named vampirserver. This control interface is the preferred way to manage
VampirServer analysis sessions. A default VampirServer instance can be started
with the following command line sequence:

$ vampirserver start

which results in the following output:

Launching VampirServer...
VampirServer 7.5.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 4 analysis processes...
↪→ (abort with vampirserver stop 12991)
VampirServer 12991 listens on: bedrock:30000

The vampirserver command line program provides a generic interface to a set
of administrative commands. Its general invocation syntax is as follows:

$ vampirserver [command] [arguments ...]

The following commands are supported: help, start, stop, list, version. We will
now discuss the commands one by one. A short summary of all supported com-
mands and arguments is given in Section 3.1.6.

3.1.1. Obtaining a Command Overview (help)

Issuing the following command on the command line:

$ vampirserver help

provides a brief overview of all commands and their arguments:

7

3.1. USING THE STANDARD CONTROL INTERFACE

USAGE
vampirserver [subcommand] [arguments ...]

SUBCOMMANDS
help, -h, --help show this little help

config, cf
Interactively configures VampirServer for the given host system. MPI
support can be enabled or disabled. The default launch script can be
set.

list, ls [servers | launchers]
List server related information. Currently, this command lists all
active servers or the available launch scripts (launchers). If no
argument is provided, all active servers are listed.

start, up [-n] [-p] [-t] [LAUNCHER]
Start a new server instance. LAUNCHER identifies the launch script to
be used.

-n, --nproc=NUMBER set the number of analysis processes
-p, --port=NUMBER[:END] set port (range) the server is going to listen on
-t, --timeout=NUMBER set the startup timeout to NUMBER seconds

stop, ex [SERVER_ID]
Stop the given server or the most recent server if no SERVER_ID is
provided. The server ID is printed during startup. Alternatively, use
the list command to print a list of available servers.

version, -v, --version show VampirServer’s revision

3.1.2. Starting a New Server Instance (start)

Issuing the following command on the command line:

$ vampirserver start

starts a new instance of VampirServer as a background process. Upon startup,
VampirServer will generate the following output:

Launching VampirServer...
VampirServer 7.5.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 4 analysis processes...
↪→ (abort with vampirserver stop 12991)
VampirServer 12991 listens on: bedrock:30000

The last output line provides the server ID (12991), the host address (bedrock),
and the socket port (30000) where the server awaits connection requests from
the Vampir performance visualizer.

By default, VampirServer will start with a concurrency level of four analysis
tasks. For analysis sessions with large data volumes this concurrency level can
be increased with the option -n:

$ vampirserver start -n 32

8

CHAPTER 3. VAMPIR SERVER

which starts a new instance of VampirServer with 32 parallel worker tasks. Vam-
pirServer will generate the following output in return:

Launching VampirServer...
VampirServer 7.5.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 32 analysis processes...
↪→ (abort with vampirserver stop 13227)
VampirServer 13227 listens on: bedrock:30000

Please note that it is recommended to have at least as many cores in your
computer system as the specified concurrency level. Otherwise, a performance
degradation will be observed.

During its lifetime VampirServer listens on a specific socket port for incoming
connection requests from the Vampir performance visualizer. At startup Vam-
pirServer picks a free port in the range of 30000-30099. Sometimes it is desirable
to use one specific port or a different port range. The port selection behavior can
be modified with the option -p. Issuing the following command on the command
line:

$ vampirserver start -p 47011

starts a new instance of VampirServer that listens to port number 47011. Vam-
pirServer generates the following output in return:

Launching VampirServer...
VampirServer 7.5.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 32 analysis processes...
↪→ (abort with vampirserver stop 17653)
VampirServer 17653 listens on: bedrock:47011

If port 47011 is already in use by another application, the invocation of Vam-
pirServer fails with the following error message:

Error: Failed to listen to network port 47011

Depending on the host platform, the startup of VampirServer involves the allo-
cation of system resources through the installed batch system. The initialization
and provision of system resources can induce long delays if they are temporarily
unavailable. VampirServer’s startup process timeouts if system resources are
unavailable for a certain period of time. The respective waiting time in seconds
can be set with the option -t. The startup command

$ vampirserver start -t 60

terminates after 60 seconds if the allocation of system resources could not be
achieved. It generates the following output:

9

3.1. USING THE STANDARD CONTROL INTERFACE

Launching VampirServer...
Error: Could not start VampirServer.

The invocation an initialization of VampirServer depends on host specific char-
acteristics like the MPI system, the batch system, or the memory and processor
architecture. The required checks and adjustments are hidden in fully transpar-
ent launch scripts so that host specific customization is reduced to a minimum.
VampirServer automatically uses a default launch script, which is selected dur-
ing the software installation process. Sometimes, additional launch scripts are
beneficial to support multiple system setups. If required, the user can manually
select a specific launch script by adding the launch script’s name to the invoca-
tion command.

$ vampirserver start smp

launches VampirServer in thread mode, i. e. MPI parallelization is disabled and
shared memory parallelization with threads is used instead. Currently, three
default launch scripts are shipped with VampirServer:

• mpi: provides a pure MPI startup sequence without batch job creation.

• lsf: provides an MPI startup sequence with automatic LSF job creation.

• smp: is an alternative startup sequence for a threaded shared memory
execution without MPI parallelization and without batch job creation.

Launch scripts can customized by system administrators and users. See Sec-
tion 3.4 for further details. By default, VampirServer searches for script files in
<install-dir>/etc/server/launcher. Alternatively, an absolute file path with a lead-
ing / to an arbitrary location in the file system can be specified as launch script
argument.

The server program is executed as a background process. It runs until it is
terminated either manually (see Section 3.1.3 below) or automatically by the
host computer’s batch system.

3.1.3. Stopping an Existing Server Instance (stop)

The standard control interface keeps track of all VampirServer launches. Upon
startup, a specific server ID is assigned to each server instance and printed as
follows:

VampirServer <server-id> listens on: <host>:<port>

A given active server instance can be terminated by issuing a stop command
with the respective server ID. Issuing the following command on the command
line will stop server instance 9991:

10

CHAPTER 3. VAMPIR SERVER

$ vampirserver stop 9991
Shutting down VampirServer <9991>...
VampirServer <9991> is down.

Please note that the server ID is an optional argument. If it is omitted, the stan-
dard control interface will terminate the most recently launched server instance.
Repeated invocation of vampirserver stop will terminate server instances
one by one until no active servers are left.

3.1.4. Listing Server Related Information (list)

The standard control interface of VampirServer can list related status and setup
information of program instances. Currently, two list types are supported: the
servers list includes all VampirServer instances that have been started by the
user. Alternatively, the launchers list provides the names of all pre-defined
launch modules.

The following command on the command line will list all known server in-
stances:

$ vampirserver list servers
24947 mars:30055 [4x, mpi]
24948 neptun:30056 [16x, smp]
24949 mars:30057 [8x, lsf]

The output lines have the following format:

<server-id> <host-name>:<port-number> [<ntasks>, <launcher>].

Each line starts with a server-id, which is a unique number for every server in-
stance. It is followed by the network location of VampirServer’s master service
process. The information consists of the host name and the port number sep-
arated by a colon. The Vampir performance visualizer requires this information
during a connection setup. A line ends with brackets enclosing the degree of par-
allelism (ntasks) and the name of the launcher startup module for a particular
server instance.

3.1.5. Configuring the Server (config)

The VampirServer program needs to be configured for the given host system
prior to being used for the first time. Normally, this configuration is done during
the software installation (see Section 2). It is however possible to re-configure
VampirServer at any time1 by typing:

$ vampirserver config

1System administrator rights might be necessary

11

3.1. USING THE STANDARD CONTROL INTERFACE

on the command line. Re-configuration can become necessary if default startup
parameters need to be changed or if the system’s message passing library (MPI)
has been updated or replaced. During the configuration the following questions
will be asked:

• Would you like to enable MPI support in VampirServer? [y]

• MPI Compiler used for VampirServer customization [/usr/bin/mpicc]:

• Compiler flags for shared object creation [-shared -fPIC]:

• Default VampirServer launch configuration (lsf, mpi, smp) [mpi]:

Default answers to these questions are provided in brackets. The default an-
swers can be confirmed by simply pressing the ’enter’ key on the keyboard. Al-
ternatively, the appropriate system settings can be entered.

For automatic, non-interactive configuration, the command line option --silent
can be set. The resulting configuration assumes default values for all parame-
ters.

12

CHAPTER 3. VAMPIR SERVER

3.1.6. Command Line Reference

The standard control interface of VampirServer is a powerful front-end for manag-
ing service instances. It hides platform dependent setup steps from the software
user. Table 3.1 gives a brief overview of the commands that are understood by
the vampirserver command line tool.

Commands Arguments and Description
config, cf [-s] Configure server settings

-s, --silent Use defaults for all questions
help Show a brief command overview

start, up [-n] [-p] [-t] [LAUNCHER] Start a new server instance
-n, --nproc NUMBER Set the number of analysis pro-

cesses
-p, --port NUMBER[:END] Set port (range) the server is go-

ing to listen on
-t, --timeout NUMBER Set the startup timeout to

NUMBER seconds
LAUNCHER Name of the launch script to be

used
stop, ex [SERVER ID] Stop a given server instance

SERVER ID Sever specific ID assigned dur-
ing startup

list, ls [servers | launchers] List server related information
servers List all launched servers
launchers List all available launch modules

version Show program version

Table 3.1.: Commands and arguments of the VampirServer control interface

13

3.2. CONNECTING VAMPIR TO VAMPIRSERVER

3.2. Connecting Vampir to VampirServer

The VampirServer program has to be used in combination with the Vampir perfor-
mance data browser, which can connect to multiple instances of VampirServer.
Once a connection has been established between Vampir and VampirServer,
trace files containing performance data can be read and analyzed.

A new remote session can be created by clicking on Open Remote. . . in the
File menu. As a result, an input dialog appears as depicted in Figure 3.1. On the
right hand side, the server’s host name and network port can be specified. The
default parameters are localhost and port 30000. Clicking on the Connect button
starts the connection setup. Once the connection is established, a file dialog is
opened, which allows to browse the remote files on VampirServer’s host system
as depicted in Figure 3.2. The trace files to be loaded have to be compliant with
the OTF or the Epilog trace file format. A compliant trace file can be loaded by
selecting the respective file name and clicking on the Open button.

After loading has been completed, Vampir will depict the Master Timeline, the
Function Summary, and the respective Function Legend. Please consult the
Vampir manual for further information. Recently viewed trace files can be re-
opened via Menu→File→Open Recent.

Figure 3.1.: Connect to Server Dialog

3.2.1. SSH Tunneling

Network firewalls often prohibit to directly connect to an active VampirServer
instance on a given port like 30000. In such a situation ssh tunneling can be

14

CHAPTER 3. VAMPIR SERVER

Figure 3.2.: Open Remote Trace File Dialog

used to set up a secure network tunnel from a local computer running the Vampir
browser to the remote computer where VampirServer is active. The following
command line sequence sets up a network tunnel from local port on your local
computer to the remote port of the given remote computer.

$ ssh -L <local-port>:<remote-node>:<remote-port>
↪→ [<user>@]<remote-computer>

Remote port needs to be set to the port number printed at the startup of Vam-
pirServer:

VampirServer <server-id> listens on:
↪→ <remote-node>:<remote-port>

The parameter user is optional and specifies your login name on the remote
computer. Please consult the SSH manual for further information about network
tunnels. Once the network tunnel is set up, the Vampir performance browser
needs to be connected locally to localhost on local port.

The following example starts a VampirServer instance on the remote computer
bedrock.eu and sets up a tunnel from an aribtrary local computer. First, Vam-
pirServer is started with:

bedrock$ vampirserver start
Launching VampirServer...
VampirServer 7.5.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 4 analysis processes...

15

3.3. USING THE BACK-END CONTROL INTERFACE

↪→ (abort with vampirserver stop 13227)
VampirServer 13227 listens on: node42:30000

The following command line sequence on the local computer sets up an SSH
tunnel to node42 on the remote computer bedrock.eu:

local$ ssh -L 30001:node42:30000 bedrock.eu

Finally, Vampir (on the local computer) is connected to the remote server by
means of the Open Remote dialog which appears when klicking on File→Open
Remote. . . in Vampir’s main menu. Prior to clicking on the Connect button,
localhost and 30001 needs to be entered in the respective input fields Server
and Port.

Unfortunately, the setup process of a tunneled Vampir/VampirServer session
is somewhat cumbersome. Therefore, Vampir 7.5 introduces a new remote con-
nection type (SSH) that renders this user driven setup process obsolete. It in-
volves a new component called VampirProxy, which automatically takes care of
the above steps. See Section 4 for further information.

3.3. Using the Back-End Control Interface

VampirServer’s processing core is a parallel distributed program whose invoca-
tion slightly depends on the host platform. These dependencies are handled au-
tomatically by the standard control interface described in Section 3.1. Therefore,
it is recommended to use VampirServer’s standard control interface by default.
However, it is possible to directly start the VampirServer processing core from
the command line. Please note that this is only recommended to experienced
users or system administrators. This section describes the server core’s invoca-
tion syntax and options.

3.3.1. Manual Invocation

The server core currently supports two modes of parallel operation: MPI mode
and thread mode. For the former, MPI has to be installed and configured prop-
erly before starting the server. The exact command line is MPI implementation-
dependent. If LAM-MPI is used, lamboot must be executed on the command line
prior to using mpirun. If MPICH is used, a machine file might be needed (see
MPICH user manual). Other MPI implementations might require different steps.
Please consult the MPI documentation of your computer system.

A server core instance can be started manually with the following command
line sequence:

$ mpirun -np <number of processes>
↪→ <install-dir>/bin/vampirserver-core

16

CHAPTER 3. VAMPIR SERVER

or

$ mpiexec -np <number of processes>
↪→ <install_dir>/bin/vampirserver-core

Please note that the number of MPI processes must at least be two. Its recom-
mended upper boundary is the number of processes and threads in the trace
files to be processed plus one. The “plus one” results from the fact that Vam-
pirServer uses a master/worker data processing model with one master and n
worker tasks.

The thread mode of the server core needs to be invoked without mpirun or a
similar prefix. Simply type:

$ export VAMPIRSERVER_MODE="thread-mode"
$ vampirserver-core

The server core will automatically detect the optimal number of threads for your
system. Alternatively, the number of threads can be set manually with the com-
mand line option -n.

A summary of all supported command line options of the server core is given
in Table 3.2:

-c --chost=NAME Cluster node that is going to listen for requests
-h --help Show this help
-n --nthreads Number of analysis threads (1–16) if

VAMPIRSERVER MODE is set to
thread-mode

-p --port=NUMBER:[END] Port range, the server is going to listen for
requests

-v --version Show program version

Table 3.2.: Command line options of the vampirserver-core program

The server program will run until it is terminated either manually with the key
sequence Ctrl-C on the command line or automatically by the host’s batch sys-
tem. Alternatively, a small utility program is provided that triggers an internal
shutdown of the server program. On systems without automatic MPI cleanup
this utility can help to ensure that no orphaned processes remain on the system.
Type

$ vampirserver-shutdown -p <host>:<port>

on the command line to trigger a server core shutdown. The server core will
terminate with the following output:

Server shutdown triggered by client.

17

3.3. USING THE BACK-END CONTROL INTERFACE

3.3.2. Environment Variables

The VampirServer core evaluates the following environment variables for config-
uration purposes. These variables overwrite the built-in defaults. Use them with
care. Please note that some MPI implementations require special command line
options, e.g. -x VAMPIRSERVER DRIVER, to correctly propagate environment
variables among their processes. Consult the documentation of your MPI instal-
lation for further details.

VAMPIRSERVER MODE

The server core currently supports two modes of parallel operation: MPI mode
and thread mode. Setting the environment variable VAMPIRSERVER MODE to
thread-mode with

$ export VAMPIRSERVER_MODE="thread-mode"

enables the built-in thread parallelization of the vampir core. MPI parallelization
is enabled by setting VAMPIRSERVER MODE to mpi-mode with

$ export VAMPIRSERVER_MODE="mpi-mode"

The server core will start in MPI mode if the variable VAMPIRSERVER MODE is
not defined or set to an unknown string.

VAMPIRSERVER DRIVER

In MPI mode, the server core requires an MPI specific driver module named
vampirserver-driver.so that is normally setup during installation. Speaking tech-
nically, this driver module is a dynamically linked shared object library. By default,
the module is located in <install-dir>/lib/vampirserver-driver.so . The environ-
ment variable VAMPIRSERVER DRIVER can be used to overwrite this default
location.

Use the following command line to set an alternative file name and path:

$ export VAMPIRSERVER_DRIVER="my-path/my-driver.so"

This option can be used to support multiple MPI implementations on the same
host. Please note that such a setup requires expert knowledge about the host
system.

VAMPIRSERVER LICENSE, VAMPIR LICENSE

The server core requires a valid Vampir Professional license. After a standard
installation, the license file is located in <install-dir>/etc/vampir.license . An al-
ternative file name and path can be set with either VAMPIRSERVER LICENSE
or VAMPIR LICENSE with the following command line:

18

CHAPTER 3. VAMPIR SERVER

$ export VAMPIRSERVER_LICENSE="my-path/my-vampir.license"

The variable VAMPIRSERVER LICENSE has precedence over VAMPIR LIC
ENSE if both variables are defined.

3.4. Customizing Launch Scripts

The invocation an initialization of VampirServer depends on host specific charac-
teristics like the MPI system, the batch system, or the memory and processor ar-
chitecture. The required checks and adjustments are hidden in fully transparent
launch scripts so that host specific customization is reduced to a minimum. Vam-
pirServer automatically uses a default launch script, which has been selected
during the software installation process. Sometimes, additional launch scripts
are beneficial to support multiple system setups. If required, the user can man-
ually select a specific launch script by adding the launch script’s name to the
invocation command as described on page 10.

This section describes the customization of a launch script step by step. Based
on the default MPI launch script a new script with support for the LSF batch
system is created. The default MPI launch script is located at <install-dir>/etc/
server/launcher/mpi. Its full listing is available at A.1. The modified launch script
with LSF support is listed in A.2. The following steps need to be done to add LSF
support to the default MPI launch script:

1. Batch jobs usually have to wait some time before they are executed. There-
fore the timeout is increased from five seconds to 300 seconds in line 17.

2. Starting VampirServer as a batch job is LSF specific. Lines 21 to 25 have
been extended to use LSF for job submission.

Listing 3.1: Startup Snippet with Pure MPI Support
16 # Startup timeout in seconds.
17 TIMEOUT=5
18
19 # Launch vampir server process.
20 launch_vs() {
21 ${MPIRUN} ${PREFIX}/bin/vampirserver-core ${opt} >${tmpfile} 2>&1 &
22 disown
23
24 # Return process ID or job ID as shutdown reference.
25 OUT_CUSTOM=$!
26 }

Listing 3.2: Startup Snippet with LSF Support
16 # Startup timeout in seconds.
17 TIMEOUT=300
18
19 # Launch vampir server process.
20 launch_vs() {
21 local submission; echo "Submitting LSF batch job (this might take a while)...

"

19

3.4. CUSTOMIZING LAUNCH SCRIPTS

22 submission=‘bsub -n $((${IN_NTASKS} + 1)) -o ${tmpfile} ${MPIRUN} ${PREFIX}/
bin/vampirserver-core ${opt}‘

23
24 # Return process ID or job ID as shutdown reference.
25 OUT_CUSTOM=‘echo "${submission}" | grep "is submitted" | sed "s/ˆJob <//;s/>

is submitted.*//"‘
26 }

3. Stopping a VampirServer instance is LSF specific likewise. Lines 32 to 35
have been altered to properly terminate the respective LSF job.

Listing 3.3: Snippet with MPI Shutdown
29 # Kill vampir server process.
30 kill_vs() {
31 # Kill server process/job.
32 kill -9 ${IN_CUSTOM} 2>/dev/null
33
34 # Wait for server to terminate.
35 while [$(kill -0 "${IN_CUSTOM}" 2>/dev/null)]; do
36 sleep 1
37 done
38 }

Listing 3.4: Snippet with LSF Shutdown
29 # Kill vampir server process.
30 kill_vs() {
31 # Kill server process/job.
32 bkill >/dev/null ${IN_CUSTOM}
33
34 # Wait for server to terminate.
35 while false; do # No waiting needed! Already done by bkill.
36 sleep 1
37 done
38 }

The resulting LSF launch script needs to be saved to <install-dir>/etc/server/
launcher/lsf. It can be tested by adding the launch script’s file name to Vam-
pirServer’s start command.

$ vampirserver start lsf

User-defined launch scripts (not located in <install-dir>/etc/server/launcher) are
supported as well. In this case, an absolute file path with a leading slash has to
be added to the start command.

$ vampirserver start /tmp/custom-script

20

CHAPTER 4. VAMPIR PROXY

4. Vampir Proxy

VampirProxy is a command line tool that supports the user in establishing a con-
nection between the Vampir performance visualizer running on a local desktop
computer and a remote instance of the VampirServer performance processor.
It fully automates the setup of so-called communication tunnels. High perfor-
mance computing resources usually require such communication tunnels for re-
mote data visualization. VampirProxy can automatically launch and connect to
remote VampirServer instances.

4.1. Prerequisites

First of all, make sure that the vampir-proxy program is installed properly on
your local system and the remote computer system. Also make sure that vampir-
proxy exists in the search path on the remote computer system. You can verify
this by typing:

$ ssh <remote-address> vampir-proxy

on the command line of your local computer system. The following output will be
printed to your console if the invocation was successful:

USAGE
vampir-proxy [OPTIONS] [[user@]hostname]

OPTIONS
Local options, evaluated when hostname is set:
-C, --config-local=FILE local configuration file
-P, --proxy-port=NUMBER local proxy listen port (default: 30000)
-E, --rsh=COMMAND remote shell invocation (default: ssh)

(default: use remote configuration file)

Options which are forwarded/executed on the remote side:
-c, --config=FILE configuration file on the remote side

(default: $HOME/.vampir/proxy/config,
<install-dir>/etc/proxy/config)

-s, --config-section=NAME section in the configuration file
(default: DEFAULT)

-h, --help show this help
-l, --list list active servers on the remote side

--proxy-exec=PROGRAM proxy file path on the remote side
(default: $PATH/vampir-proxy)

-a, --server-host=ADDRESS server address (default: localhost)
-p, --server-port=NUMBER server listen port (default: 30000)

--server-script=SCRIPT script that starts vampir server
(default: $HOME/.vampir/proxy/agent,
<install_dir>/etc/proxy/agent)

--server-startup=MODE start server on remote host

21

4.2. STARTING A PROXY SESSION

[no][single][multi] (default: no)
-n, --server-tasks=NUMBER number of worker tasks (excluding boss)

(default: 4)
-v, --verbose increase verbosity

If the command vampir-proxy has not been found on the remote side, the follow-
ing output will be printed to your console:

bash: vampir-proxy: command not found

Make sure that the install path of vampir-proxy is permanently added to your
default search path (see the shell documentation about the PATH environment
variable on your remote computer).

Finally, check that VampirServer is installed properly on your (remote) com-
puter system by typing:

$ vampir-server start

which should result in an output similar to:

Launching VampirServer...
VampirServer 7.5.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 4 analysis processes...
↪→ (abort with vampirserver stop 12991)
VampirServer 12991 listens on: bedrock:30000

See Section 2 for the installation of VampirServer.

4.2. Starting a Proxy Session

VampirProxy needs to be started on the computer system that runs the Vam-
pir performance visualizer. In the following section, this computer system will
be referred to as local system. The remote system is the machine where Vam-
pirServer will be running. The following input on the command line interface will
start a proxy instance on the local system:

$ vampir-proxy [<user>@]<host>

The proxy command on the local system will automatically establish a connec-
tion to the remote system host. A successful connection setup is quoted with the
following message:

Waiting for confirmation from the remote side.
This may take some time.
Listening on localhost:30000
Type "quit" and press "Enter" to exit vampir-proxy.

22

CHAPTER 4. VAMPIR PROXY

On the local system you can now connect to the remote VampirServer instance
by connecting to localhost:30000 (see Section 3.2 for further details). An error is
indicated as follows:

VAMPIR-PROXY: Error: Could not find the vampir-proxy
↪→ executable on the remote host.

On the local system, VampirProxy listens on network port 30000 for incoming
connect request from the Vampir performance visualizer. The port number can
be changed with the command line option -P <port>.

In order to connect to a remote system, VampirProxy uses the remote-shell
program ssh as the transport. It is possible to set a different remote-shell pro-
gram and additional command line arguments with the option -E ”<command>”.
The proxy invocation

$ vampir-proxy -P 30003 -E "ssh -c blowfish" bedrock.eu

for example, uses the remote shell program ssh with blowfish encryption for trans-
port and offers its service on the local network port 30003. The connection is
established to a remote system named bedrock.eu.

4.3. Connecting to a VampirServer Remote Station

When connected to a remote system, VampirProxy tries to forward all requests
to the remote VampirServer instance listening on port 30000. For this basic
example, we assume that VampirServer was manually started beforehand (see
Section 3.1.2). It is possible to alter this default behavior with the command line
options -p <port> and -a <host>, which can be used to contact an alternative
server on or reachable from the remote system.

Entering the following command line sequence on the local system sets up a
proxy session between port 300xx (default) on the local system and port 25000
on the remote system called bedrock.eu.

$ vampir-proxy -p 25000 bedrock.eu

This example assumes that VampirServer has been started manually beforehand
on bedrock.eu and that it has been configured to listen on port 25000 (see Sec-
tion 3.1.2).

If required, the local port of VampirProxy can be changed with the -P (capital!)
option. Entering

$ vampir-proxy -p 25000 -P 25001 bedrock.eu

on the local system starts a proxy session that connects to a VampirServer in-
stance on bedrock.eu port 25000 and forwards its service to the local system on
port 25001.

23

4.4. LAUNCHING VAMPIRSERVER VIA VAMPIRPROXY

Large computer systems often consist of login and compute nodes. The lat-
ter are typically protected and hidden behind a firewall. VampirProxy can also
connect to VampirServer instances behind a firewall. The following example as-
sumes that a VampirServer instance is active on the compute node node42 of the
remote system bedrock.eu. The following command line sequence starts a proxy
session to VampirServer on node42 (port 30000) via the login node bedrock.eu.

$ vampir-proxy -a node42 bedrock.eu

On some remote systems, the executable vampir-proxy might not be in the
default search path when invoked as SSH remote command. VampirProxy will
consequently fail with the following error message:

VAMPIR-PROXY: Error: Could not find the vampir-proxy
↪→ executable on the remote host.

The problem usually can be solved by extending the default search path on the
remote system. If this is not possible or does not solve the problem for some
unknown reason, it is possible to specify the absolute remote path of vampir-
proxy as follows:

$ vampir-proxy --proxy-exec /home/barnie/vampir-proxy
↪→ bedrock.eu

4.4. Launching VampirServer via VampirProxy

VampirProxy facilitates the connection setup between the Vampir performance
browser and VampirServer. The previous sections assume that VampirServer
is started manually by the user. VampirProxy can also automatically launch pro-
gram instances of VampirServer. The command line options --server-startup and
--server-script control the launch behavior, which is turned off by default. Prior to
using this functionality, make sure that VampirServer is reachable and configured
on the remote system by typing:

$ ssh <remote-address> vampir-server start

on the command line of the local computer system. The resulting output should
look like:

Launching VampirServer...
Estimating the number of processing elements
↪→ (overwrite with -n option)...
VampirServer 7.5.0
Licensed to Fred Flintstone, Slate Rock and Gravel Inc.
Running 4 analysis processes...
↪→ (abort with vampirserver stop 12991)
VampirServer 12991 listens on: bedrock:30000

24

CHAPTER 4. VAMPIR PROXY

The following command line sequence on the local computer system creates a
proxy connection to the remote computer system bedrock.eu and automatically
starts a new instance of the VampirServer program.

$ vampir-proxy --server-startup=multi bedrock.eu

A successful setup is prompted with the following message:

Waiting for confirmation from the remote side.
This may take some time.
Listening on localhost:30000
Type "quit" and press "Enter" to exit vampir-proxy.

The command line option --server-startup=multi implies that each proxy session
starts its a own instance of the VampirServer program. This is not desirable in
all situations. Alternatively, --server-startup=single starts only one instance of
the VampirServer program that is shared among other sessions started with this
option. Finally, --server-startup=no prohibits automatic startup of VampirServer,
even if it has been made the default configuration during software installation.

By default, VampirServer is started with 1 to 16 parallel tasks depending on the
available CPU resources. It is possible to set the number of tasks manually with
the command line option --server-tasks. Entering the command line sequence

$ vampir-proxy --server-tasks=32 --server-startup=multi
↪→ bedrock.eu

on the local system sets up a proxy session with bedrock.eu and starts a Vam-
pirServer instance with 32 parallel analysis tasks on bedrock.eu. Please note
that this option requires --server-startup=multi to take effect. When combined
with --server-startup=single this option will only influence the initial startup of the
shared VampirServer instance. With --server-startup=no it has no effect at all.

The automatic startup process of VampirServer is performed by a script agent
located at <install-dir>/etc/proxy/agent. Use the --server-script=filepath option
to specify an alternative script agent. Make sure that the alternative file path
points to a valid script location on the remote system.

$ vampir-proxy --server-script=/home/fred/proxy-agent
↪→ bedrock.eu

25

APPENDIX A. APPENDIX

A. Appendix

A.1. Default MPI Launch Script

1 #
2 # Copyright (c) 2011 ZIH, Technische Universitaet Dresden, Germany
3 #
4 # @file launcher/mpi
5 #
6 # @brief Pure MPI startup sequence without batch job creation.
7 #
8 # @author Holger Brunst
9 #

10
11
12 # System’s launch program for MPI programs.
13 MPIRUN="mpirun"
14
15
16 # Startup timeout in seconds.
17 TIMEOUT=5
18
19 # Launch vampir server process.
20 launch_vs() {
21 ${MPIRUN} ${PREFIX}/bin/vampirserver-core ${opt} >${tmpfile} 2>&1 &
22 disown
23
24 # Return process ID or job ID as shutdown reference.
25 OUT_CUSTOM=$!
26 }
27
28
29 # Kill vampir server process.
30 kill_vs() {
31 # Kill server process/job.
32 kill -9 ${IN_CUSTOM} 2>/dev/null
33
34 # Wait for server to terminate.
35 while [$(kill -0 "${IN_CUSTOM}" 2>/dev/null)]; do
36 sleep 1
37 done
38 }
39
40
41 # Return the path of a global temporary file.
42 tmpfile()
43 {
44 # IN_SERVER = internal job ID for server identification
45
46 echo "${HOME}/.vampir/tmp/vampirserver.${IN_SERVER}.tmp"
47 }
48
49
50 # Terminate the given server.
51 stop()
52 {

27

A.1. DEFAULT MPI LAUNCH SCRIPT

53 # IN_HOST = IP address of host
54 # IN_PORT = listen port of host
55 # IN_SERVER = internal job ID for server identification
56 # IN_CUSTOM = Launcher custom data. Here: PID of mpirun
57
58
59 # Clean up temporary output file.
60 rm -f "‘tmpfile ${IN_SERVER}‘"
61 }
62
63
64 # Start a new server instance.
65 start()
66 {
67 # IN_NTASKS = number of analysis tasks
68 # IN_PORTS = listen port range
69 # IN_SERVER = internal job ID for server identification
70 # IN_TIMEOUT = timeout of startup process
71 # OUT_MESSAGE = server output
72 # OUT_CUSTOM = launcher custom data
73 # $? = true if successful, false otherwise
74
75 local success=false
76 local tmpfile="‘tmpfile ${IN_SERVER}‘"
77
78 export VAMPIRSERVER_DRIVER="${PREFIX}/lib/vampirserver-driver.so"
79 export VAMPIRSERVER_MODE="mpi-mode"
80
81
82 # Use default for startup timeout?
83 if ["${IN_TIMEOUT}"]; then
84 TIMEOUT="${IN_TIMEOUT}"
85 fi
86
87
88 # Use default for number of analysis tasks?
89 if [-z "${IN_NTASKS}"]; then
90 IN_NTASKS=4
91 fi
92
93
94 # Detect MPI implementation. Make sure that VAMPIRSERVER_DRIVER and VAMPIRSERVER_MODE
95 # are exported to all MPI ranks.
96 if (${MPIRUN} --version 2>&1 | grep -q "Open MPI"); then
97 # Open MPI
98 MPIRUN="${MPIRUN} -x VAMPIRSERVER_DRIVER -x VAMPIRSERVER_MODE"
99 fi

100
101
102 # Set number of MPI ranks.
103 MPIRUN="${MPIRUN} -np $((${IN_NTASKS} + 1))"
104
105 if test "${IN_PORTS}"; then
106 opt="${opt} -p ${IN_PORTS}"
107 fi
108
109
110 # Launch vampir server in background.
111 launch_vs
112
113
114 # Wait and read server output.
115 local begin=‘date +%s‘
116 while true; do
117 local listen
118 listen=‘grep ’Server listens on:’ ${tmpfile} 2>/dev/null‘

28

APPENDIX A. APPENDIX

119
120 # Stop this loop when server has printed his communication link.
121 if [$? == 0]; then
122 success=true
123 break
124 fi
125
126 # Stop this loop when server exited with an error code.
127 if grep -q ’Error: ’ ${tmpfile} 2>/dev/null; then
128 break
129 fi
130
131 # Check timeout.
132 if timeout ${begin} ${TIMEOUT}; then
133 break
134 fi
135 done
136
137
138 # Buffer server output.
139 OUT_MESSAGE=""
140 if [-e "${tmpfile}"]; then
141 OUT_MESSAGE="‘cat ${tmpfile}‘"
142 fi
143
144
145 # Kill server in case of a failure.
146 if ! ${success}; then
147 IN_CUSTOM=${OUT_CUSTOM}
148 stop
149 fi
150
151
152 ${success}
153 }

A.2. MPI Launch Script with LSF Support

1 #
2 # Copyright (c) 2011 ZIH, Technische Universitaet Dresden, Germany
3 #
4 # @file launcher/lsf
5 #
6 # @brief MPI startup sequence with LSF job creation.
7 #
8 # @author Holger Brunst
9 #

10
11
12 # System’s launch program for MPI programs.
13 MPIRUN="mpirun"
14
15
16 # Startup timeout in seconds.
17 TIMEOUT=300
18
19 # Launch vampir server process.
20 launch_vs() {
21 local submission; echo "Submitting LSF batch job (this might take a while)..."
22 submission=‘bsub -n $((${IN_NTASKS} + 1)) -o ${tmpfile} ${MPIRUN} ${PREFIX}/bin/

vampirserver-core ${opt}‘
23
24 # Return process ID or job ID as shutdown reference.

29

A.2. MPI LAUNCH SCRIPT WITH LSF SUPPORT

25 OUT_CUSTOM=‘echo "${submission}" | grep "is submitted" | sed "s/ˆJob <//;s/> is
submitted.*//"‘

26 }
27
28
29 # Kill vampir server process.
30 kill_vs() {
31 # Kill server process/job.
32 bkill >/dev/null ${IN_CUSTOM}
33
34 # Wait for server to terminate.
35 while false; do # Not waiting needed! Already done by bkill.
36 sleep 1
37 done
38 }
39
40
41 # Return the path of a global temporary file.
42 tmpfile()
43 {
44 # IN_SERVER = internal job ID for server identification
45
46 echo "${HOME}/.vampir/tmp/vampirserver.${IN_SERVER}.tmp"
47 }
48
49
50 # Terminate the given server.
51 stop()
52 {
53 # IN_HOST = IP address of host
54 # IN_PORT = listen port of host
55 # IN_SERVER = internal job ID for server identification
56 # IN_CUSTOM = Launcher custom data. Here: PID of mpirun
57
58
59 # Clean up temporary output file.
60 rm -f "‘tmpfile ${IN_SERVER}‘"
61 }
62
63
64 # Start a new server instance.
65 start()
66 {
67 # IN_NTASKS = number of analysis tasks
68 # IN_PORTS = listen port range
69 # IN_SERVER = internal job ID for server identification
70 # IN_TIMEOUT = timeout of startup process
71 # OUT_MESSAGE = server output
72 # OUT_CUSTOM = launcher custom data
73 # $? = true if successful, false otherwise
74
75 local success=false
76 local tmpfile="‘tmpfile ${IN_SERVER}‘"
77
78 export VAMPIRSERVER_DRIVER="${PREFIX}/lib/vampirserver-driver.so"
79 export VAMPIRSERVER_MODE="mpi-mode"
80
81
82 # Use default for startup timeout?
83 if ["${IN_TIMEOUT}"]; then
84 TIMEOUT="${IN_TIMEOUT}"
85 fi
86
87
88 # Use default for number of analysis tasks?
89 if [-z "${IN_NTASKS}"]; then

30

APPENDIX A. APPENDIX

90 IN_NTASKS=4
91 fi
92
93
94 # Detect MPI implementation. Make sure that VAMPIRSERVER_DRIVER and VAMPIRSERVER_MODE
95 # are exported to all MPI ranks.
96 if (${MPIRUN} --version 2>&1 | grep -q "Open MPI"); then
97 # Open MPI
98 MPIRUN="${MPIRUN} -x VAMPIRSERVER_DRIVER -x VAMPIRSERVER_MODE"
99 fi

100
101
102 # Set number of MPI ranks.
103 MPIRUN="${MPIRUN} -np $((${IN_NTASKS} + 1))"
104
105 if test "${IN_PORTS}"; then
106 opt="${opt} -p ${IN_PORTS}"
107 fi
108
109
110 # Launch vampir server in background.
111 launch_vs
112
113
114 # Wait and read server output.
115 local begin=‘date +%s‘
116 while true; do
117 local listen
118 listen=‘grep ’Server listens on:’ ${tmpfile} 2>/dev/null‘
119
120 # Stop this loop when server has printed his communication link.
121 if [$? == 0]; then
122 success=true
123 break
124 fi
125
126 # Stop this loop when server exited with an error code.
127 if grep -q ’Your job looked like:\|Error:’ ${tmpfile} 2>/dev/null; then
128 break
129 fi
130
131 # Check timeout.
132 if timeout ${begin} ${TIMEOUT}; then
133 break
134 fi
135 done
136
137
138 # Buffer server output.
139 OUT_MESSAGE=""
140 if [-e "${tmpfile}"]; then
141 OUT_MESSAGE="‘cat ${tmpfile}‘"
142 fi
143
144
145 # Kill server in case of a failure.
146 if ! ${success}; then
147 IN_CUSTOM=${OUT_CUSTOM}
148 stop
149 fi
150
151
152 ${success}
153 }

31

	Introduction
	Installation
	Vampir Server
	Using the Standard Control Interface
	Obtaining a Command Overview (help)
	Starting a New Server Instance (start)
	Stopping an Existing Server Instance (stop)
	Listing Server Related Information (list)
	Configuring the Server (config)
	Command Line Reference

	Connecting Vampir to VampirServer
	SSH Tunneling

	Using the Back-End Control Interface
	Manual Invocation
	Environment Variables

	Customizing Launch Scripts

	Vampir Proxy
	Prerequisites
	Starting a Proxy Session
	Connecting to a VampirServer Remote Station
	Launching VampirServer via VampirProxy

	Appendix
	Default MPI Launch Script
	MPI Launch Script with LSF Support

