
Programming Shared Memory
Systems with OpenMP

Reinhold Bader (LRZ)

Georg Hager (RRZE)

February 2006 ©2006 LRZ, RRZE, SGI and Intel 2

What is OpenMP?

Directive-based Parallelization Method on Shared Memory
Systems

Implementations for DMS also exist

Some library routines are provided

Support for Data Parallelism
“Base Languages”

Fortran (77/90/95)

C (90/99)

C++

Note: Java (JOMP, Java Threads based, is not a base language)

WWW Resources
OpenMP Home Page:

http://www.openmp.org

OpenMP Community Page:
http://www.compunity.org

February 2006 ©2006 LRZ, RRZE, SGI and Intel 3

OpenMP Standardization

Standardized for Portability:
Fortran Specification 1.0 Oct. 1997

Fortran Specification 1.1 Nov. 1999 (Updates)

Fortran Specification 2.0 Mar. 2000

New Features:

Better support nested parallelism

Array reductions

Fortran Module and Array support

Combined Fortran, C, C++ Specification 2.5 May 2005

No changes in functionality

Clarifications (Memory Model, Semantics)

Some renaming of terms

February 2006 ©2006 LRZ, RRZE, SGI and Intel 4

Further OpenMP resources

OpenMP at LRZ:
http://www.lrz.de/services/software/parallel/openmp

OpenMP at HLRS (Stuttgart):
http://www.hlrs.de/organization/tsc/services/models/openmp/index.html

R. Chandra et al.: Parallel Programming in OpenMP
Academic Press, San Diego, USA, 2001, ISBN 1-55860-671-8

Acknowledgments are due to
Isabel Loebich and Michael Resch (HLRS, OpenMP workshop, Oct., 1999)

Ruud van der Pas (Sun, IWOMP workshop, June 2005)

General Concepts

An abstract overview

of OpenMP terms

and usage context

February 2006 ©2006 LRZ, RRZE, SGI and Intel 6

Two Paradigms for Parallel Programming
as suggested (not determined!) by Hardware Design

Distributed Memory
Message Passing

explicit programming
required

Shared Memory
common address space for a
number of CPUs

access efficiency may vary

SMP, (cc)NUMA

many programming models

potentially easier to handle

hardware and OS
support!

P

M

Message

Communication Network

P

M

P

M

P

M

P P P P

Memory

February 2006 ©2006 LRZ, RRZE, SGI and Intel 7

privateprivate

Shared
Memory
Shared
Memory

Shared Memory Model used by OpenMP

T

T

T

T

Threads access globally
shared memory

Data can be shared or
private

shared data available
to all threads (in
principle)

private data only to
thread that owns it

Data transfer
transparent to
programmer

Synchronization takes
place, is mostly implicit

privateprivate

privateprivate
privateprivate

February 2006 ©2006 LRZ, RRZE, SGI and Intel 8

OpenMP Architecture:
Operating System and User Perspective

OS View:
parallel work done by
threads

Programmer’s View:
Directives (comment
lines)

Library Routines

User’s View
Environment Variables
(Resources, Scheduling)

Application

Compiler
Directives

User

Environment
Variables

Runtime Library

Threads in OS
CPUs in Hardware

February 2006 ©2006 LRZ, RRZE, SGI and Intel 9

OpenMP Program Execution
Fork and Join

Program start: only
master thread runs
Parallel region: team of
worker threads is
generated (“fork”)
synchronize when
leaving parallel region
(“join”)
Only master executes
sequential part

worker threads persist,
but are inactive

task and data
distribution possible via
directives
Usually optimal:
1 Thread per Processor

Thread # 0 1 2 3 4 5

February 2006 ©2006 LRZ, RRZE, SGI and Intel 10

Retaining sequential functionality

OpenMP
enables to retain sequential
functionality i.e.

by proper use of directives it
is possible to compile code
sequentially

and obtain correct results

No enforcement
can also write conforming
code in a way that omitting
OpenMP functionality at
compile time does not yield a
properly working program

program documentation

Caveats
non-associativity of numerical
model number operations

parallel execution may
reorder operations

and do so differently between
runs and with varying thread
numbers

February 2006 ©2006 LRZ, RRZE, SGI and Intel 11

OpenMP in the HPC context (1)
Comparing parallelization methods

 MPI
 (shared and
distributed
memory
Systems)

OpenMP
(shared
memory
Systems)

Proprietary
parallelization
Directives

High
Performance
Fortran

Portable? Yes Yes No Yes
Scalable? Yes Partially Partially Yes
Support for
Data Parallelism?

No Yes Yes Yes

Incremental
Parallelization?

No Yes Yes Partially

Serial Functionality
unchanged?

No Yes Yes Yes

Correctness verifiable? No Yes ? ?

February 2006 ©2006 LRZ, RRZE, SGI and Intel 12

OpenMP in the HPC context (2)
Hybrid parallelization on clustered SMPs

Parallelized by
library call (HPF, MPI, PVM etc.)

Multi-Threading (OpenMP)

Low-Level Optimization

Inter-Node

Node

Single
CPU

DO j=1,m Intra-node OpenMP processing

DO I=1,l

DO k=1,n

Node Performance = OpenMP + Low-Level OptimizationNode Performance = OpenMP + Low-Level Optimization

single processor execution

Inter-node parallelization (MPI)

Message PassingMessage Passing

February 2006 ©2006 LRZ, RRZE, SGI and Intel 13

Levels of Interoperability
between MPI and OpenMP (1)

Call of MPI-2 threaded initialization

call MPI_INIT_THREAD(required, provided)
with parameters of default integer KIND replaces MPI_INIT

Base Level support:

Initialization returns
MPI_THREAD_SINGLE

MPI calls must occur in
serial (i.e., non-threaded)
parts of Program

call MPI_xy(...)

call MPI_xy(...)

February 2006 ©2006 LRZ, RRZE, SGI and Intel 14

Levels of Interoperability
between MPI and OpenMP (2)

First Level support:

Initialization returns
MPI_THREAD_FUNNELED

MPI calls allowed in
threaded parts

MPI calls only by master

Second Level support

Initialization returns
MPI_THREAD_SERIALIZED

MPI calls allowed in
threaded parts

No concurrent calls
synchronization
between calls required

call MPI_xy(...)

call MPI_xy(...)

February 2006 ©2006 LRZ, RRZE, SGI and Intel 15

Levels of Interoperability
between MPI and OpenMP (3)

Third Level support

Initialization returns
MPI_THREAD_MULTIPLE

MPI calls allowed in
threaded parts
No restrictions

call MPI_xy(...)

Notes:

Sometimes, a SINGLE implementation will also work in
FUNNELED mode if no system calls (malloc automatic
buffering, file operations) are performed in connection with
the MPI communication

A fully threaded MPI implementation will probably have
worse performance, especially for small message sizes

selection of thread level support by user at run time may help

February 2006 ©2006 LRZ, RRZE, SGI and Intel 16

OpenMP availability at LRZ

LRZ Linux Cluster: Intel Compilers
IA32 and Itanium SMPs

sgi Altix 3700 (16 8-way bricks, ccNUMA)

sgi Altix 4700 (HLRB2)

Hitachi Fortran 90 and C Compilers:
OpenMP maps to a subset of Hitachi’s proprietary directives

Available within an 8-way node

C++ not supported

February 2006 ©2006 LRZ, RRZE, SGI and Intel 17

OpenMP availability at RRZE

SGI R3400 (SGI Compiler)
28-way system: 7 4-way bricks, ccNUMA

SGI Altix (IA64-based, Intel Compiler)
28-way system: 7 4-way bricks, ccNUMA

February 2006 ©2006 LRZ, RRZE, SGI and Intel 18

Programming with OpenMP

Not a coverage of complete OpenMP
functionality

Please read the Standard document!

Give you a feel for how to use OpenMP
a few characteristic examples

do-it-yourself: hands-on sessions

Give some hints on pitfalls when using OpenMP
deadlock hangs

livelock never finishes

race conditions wrong results

Basic OpenMP functionality

About Directives and Clauses

About Data

About Parallel Regions
and Work Sharing

February 2006 ©2006 LRZ, RRZE, SGI and Intel 20

program compute_pi
... (declarations omitted)

! function to integrate
f(a)=4.0_8/(1.0_8+a*a)

w=1.0_8/n
sum=0.0_8

do i=1,n
x=w*(i-0.5_8)
sum=sum+f(x)

enddo
pi=w*sum

... (printout omitted)
end program compute_pi

A first example (1)
Numerical Integration

Approximate by a discrete sum

where

We want

solve this in OpenMP

)(1)(
1

0 1
∫ ∑

=

≈
n

i
ixf

n
dttf

),...,1(5.0 ni
n

ixi =
−

=

π=
+∫

1

0
21

4
x

dx

February 2006 ©2006 LRZ, RRZE, SGI and Intel 21

A first example (2):
serial and OpenMP parallel Code

use omp_lib
...
pi=0.0_8
w=1.0_8/n
!$OMP parallel private(x,sum)
sum=0.0_8
!$OMP do
do i=1,n
x=w*(i-0.5_8)
sum=sum+f(x)

enddo
!$OMP end do
!$OMP critical
pi=pi+w*sum
!$OMP end critical
!$OMP end parallel

Now let’s discuss
the different bits
we’ve seen here ...

February 2006 ©2006 LRZ, RRZE, SGI and Intel 22

Each directive starts with sentinel:

fixed source: !$OMP or C$OMP or *$OMP
free source: !$OMP

followed by a directive and, optionally, clauses.

For function calls:

conditional compilation of lines starting with !$ or C$ or *$
Example:

beware implicit typing!

use include file (or Fortran 90 module if available)

Continuation line, e.g.:
!$omp directive &
!$omp clause

myid = 0
!$ myid = omp_get_thread_num()

OpenMP Directives
Syntax in Fortran

in column 1

February 2006 ©2006 LRZ, RRZE, SGI and Intel 23

OpenMP Directives
Syntax in C/C++

Include file
#include <omp.h>

pragma preprocessor directive:

#pragma omp [directive [clause ...]]
structured block

conditional compilation: switch sets preprocessor macro

#ifdef _OPENMP

... do something

#endif

continuation line, e.g.:

#pragma omp directive \
clause

February 2006 ©2006 LRZ, RRZE, SGI and Intel 24

OpenMP Syntax:
On Clauses

Many (but not all) OpenMP directives support clauses

Clauses specify additional information with the directive

Integration example:
private(x,sum) appears as clause to the parallel directive

The specific clause(s) that can be used depend on the
directive

e.g., barrier

February 2006 ©2006 LRZ, RRZE, SGI and Intel 25

OpenMP Syntax:
Properties of “structured block”

Defined by braces in C/C++

Requires a bit more care in Fortran
code between begin/end of an OpenMP construct must be a
complete, valid Fortran block

Single point of entry
no GOTO into block (Fortran), no setjmp() to entry point (C)

Single point of exit
no RETURN, GOTO, EXIT out of block (Fortran)

longjmp() and throw() may violate entry/exit rules (C, C++)

exception: STOP (exit () in C/C++) is allowed (error exit)

February 2006 ©2006 LRZ, RRZE, SGI and Intel 26

OpenMP parallel regions
How to generate a Team of Threads

!$OMP PARALLEL and !$OMP END PARALLEL
Encloses a parallel region: All code executed between start and
end of this region is executed by all threads.

This includes subroutine calls within the region (unless explicitly
sequentialized)

Both directives must appear in the same routine.

C/C++:
#pragma omp parallel
structured block

No END PARALLEL directive since block structure defines
boundaries of parallel region

February 2006 ©2006 LRZ, RRZE, SGI and Intel 27

OpenMP work sharing for loops

Requires thread distribution directive

!$OMP DO / !$OMP END DO encloses a loop which is to be
divided up if within a parallel region (“sliced”).

all threads synchronize at the end of the loop body

this default behaviour can be changed ...

Only loop immediately following the directive is sliced
C/C++:
#pragma omp for [clause]
for (...) {

...
}

restrictions on parallel loops (especially in C/C++)

trip count must be computable (no do while)

loop body with single entry and single exit point

February 2006 ©2006 LRZ, RRZE, SGI and Intel 28

Directives for Data scoping
shared and private

Remember the OpenMP memory model?
Within a parallel region,
data can either be

private to each executing thread
each thread has its own local copy of data

or be

shared between threads
there is only one instance of data available to all threads

this does not mean that the instance is always visible to all threads!
Integration example:

shared scope not desirable for x and sum since values computed
on one thread must not be interfered with by another thread.

Hence:

!$OMP parallel private(x,sum)

Shared
Memory

Shared
Memory

T

T

T

T

February 2006 ©2006 LRZ, RRZE, SGI and Intel 29

Defaults for data scoping

All data in parallel region are shared

This includes global data (Module, COMMON)

Exceptions:
1. Local data within enclosed subroutine calls are private

(Note: Inlining must be treated correctly by compiler!) unless
declared with SAVE attribute

2. Loop variables of parallel (“sliced”) loops are private

Due to stack size limits it may be necessary to give large
arrays the SAVE attribute

This presupposes it is safe to do so!

If not: convert to ALLOCATABLE

For Intel Compilers: KMP_STACKSIZE may be set at run time
(increase thread-specific stack size)

February 2006 ©2006 LRZ, RRZE, SGI and Intel 30

Changing the scoping defaults

Default value for data scoping can be changed by using
the default clause on a parallel region:

!$OMP parallel default(private)

Beware side effects of data scoping:

Incorrect shared attribute may lead to race conditions
and/or performance issues (“false sharing”).

Use verification tools.

Scoping of local subroutine data and global data
is not (hereby) changed

compiler cannot be assumed to have knowledge

Recommendation: Use

!$OMP parallel default(none)

so as not to overlook anything

Not in
C/C++

February 2006 ©2006 LRZ, RRZE, SGI and Intel 31

Storage association of private data

Private variables: undefined on entry and upon exit of
parallel region
Original value of variable (before parallel region) is
undefined after exit from parallel region
To change this:

Replace private by firstprivate or lastprivate
To have both is presumably not possible

Private variable within parallel region has no storage
association with same variable outside region

February 2006 ©2006 LRZ, RRZE, SGI and Intel 32

Notes on privatization of dynamic data

C pointers:

int *p
!$omp parallel private(p)

previous pointer association
will be lost

need to allocate memory for
the duration of parallel region

or point to otherwise
allocated space

int *p
!$omp parallel private(*p)

this is not allowed

Fortran pointers/allocatables

real, pointer, dimension(:) :: p
real, allocatable :: a(:)
!$omp parallel private(p)

p: pointer association lost if
previously established

re-point or
allocate/deallocate

a: must have allocation status
“not currently allocated” upon
entry and exit to/from parallel
region

February 2006 ©2006 LRZ, RRZE, SGI and Intel 33

A first example (4):
Accumulating partial sums critical directive

After loop has completed: add up partial results

Code needs to be sequentialized to accumulate to a shared
variable:

!$OMP CRITICAL / !$OMP END CRITICAL

Only one thread at a time may execute enclosed code.

However, all threads eventually perform the code.

potential performance problems for sequentialized code!

Alternative 1: Single line update of one memory location

via atomic directive (possibly less parallel overhead):

!$OMP atomic
x = x operator expr
Alternative 2: Reduction operation (discussed later)

February 2006 ©2006 LRZ, RRZE, SGI and Intel 34

Compiling OpenMP Code on the SGI Altix

Options for Intel Fortran Compiler (ifort)

-O3 -openmp -openmp_report2
enables the OpenMP directives in your code

gives information about parallelization procedure

-auto is implied: all local variables (except those with SAVE
attribute) on the stack

ifort -O3 -tpp2 -openmp -o pi.run pi.f90

February 2006 ©2006 LRZ, RRZE, SGI and Intel 35

Running the OpenMP executable
on the SGI Altix

Prepare environment:

export OMP_NUM_THREADS=4

(usually: as many threads as processors are available for your
job)

Start executable in the usual way (or use NUMA tools)

./pi.run

If MPI is also used
export MPI_OPENMP_INTEROP=yes
mpirun –np 3 ./myprog.exe

to run on e.g., 12 CPUs

0 1 2
0 1 2 30 1 2 3 0 1 2 3

Idea:
space out MPI processes

keep spawned threads as
near to master as possible
(minimize router hops)

February 2006 ©2006 LRZ, RRZE, SGI and Intel 36

New example:
Solving the heat conduction equation

Square piece of metal

Temperature Φ(x,y,t)

Boundary values:

Φ(x,1,t) = 1, Φ(x,0,t) = 0,

Φ(0,y,t) = y = Φ(1,y,t)

Initial value within interior of
square: zero

Temporal evolution:
to stationary state

partial differential equation x

y

1

1

2

2

2

2

yxt ∂
Φ∂

+
∂
Φ∂

=
∂
Φ∂

February 2006 ©2006 LRZ, RRZE, SGI and Intel 37

Heat conduction (2):
algorithm for solution of IBVP

Interested in stationary state
discretization in space: xi, yi

2-D Array Φ
discretization in time:

steps δt

repeatedly calculate
increments

until δΦ=0 reached.

⎥
⎦

⎤
⎢
⎣

⎡ Φ−−Φ++Φ
+

Φ−−Φ++Φ
⋅=Φ 22

),(2)1,()1,(),(2),1(),1(),(
dy

kikiki
dx

kikikitki δδ

x1

y

1

dx

dy

February 2006 ©2006 LRZ, RRZE, SGI and Intel 38

Heat Conduction (3):
data structures

2-dimensional array phi for heat values

equally large phin, to which updates are written

Iterate updates until stationary value is reached

Both arrays shared
since grid area is to be tiled to OpenMP threads

Thread 0

Thread 1

Thread 2

Thread 3

February 2006 ©2006 LRZ, RRZE, SGI and Intel 39

Heat Conduction (4):
code for updates

! iteration
do it=1,itmax

dphimax=0.
!$OMP parallel do private(dphi,i) &
!$OMP reduction(max:dphimax)

do k=1,kmax-1
do i=1,imax-1

dphi=(phi(i+1,k)+phi(i-1,k)-
2.0_8*phi(i,k))*dy2i &

+(phi(i,k+1)+phi(i,k-1)-
2.0_8*phi(i,k))*dx2i

dphi=dphi*dt
dphimax=max(dphimax,abs(dphi))
phin(i,k)=phi(i,k)+dphi

enddo
enddo

!$OMP end parallel do

!$OMP parallel do
do k=1,kmax-1
do i=1,imax-1

phi(i,k)=phin(i,k)
enddo
enddo

!$OMP end parallel do
!required precision reached?

if (dphimax.lt.eps) goto 10
enddo
10 continue

“parallel do”:
is a semantic fusion

of “parallel” and “do”

February 2006 ©2006 LRZ, RRZE, SGI and Intel 40

Reduction clause (1)

dphimax has both shared and private characteristics,
since maximum over all grid points required

new data attribute reduction,
combined with an operation

General form of reduction operation:
!$OMP do reduction (Operation : X)

DO
...
X = X Operation Expression (*)
...

END DO
!$OMP end do

The variable X is used as (scalar) reduction variable.

February 2006 ©2006 LRZ, RRZE, SGI and Intel 41

Reduction clause (2):
what can be reduced?

Operation I nit ial Value Rem arks
+ 0
* 1
- 0 X = Expression – X

not allowed
.AND. .TRUE.
.OR. .FALSE.
.EQV. .TRUE.
.NEQV. .FALSE.
MAX Sm allest representable num ber
MI N Largest representable num ber
I AND All bits set
I OR 0
I EOR 0

For function like e. g., MAX, can replace (*) by

X = MAX(X,Expression)

or

IF (X <= Expression) X = Expression

February 2006 ©2006 LRZ, RRZE, SGI and Intel 42

Reduction clause (3):
reduction rules

private copies of reduction variables exist during
execution of parallel region

private copies are initialized as shown in table above

Reduction to shared reduction variable at synchronization
point

beware nowait clause!

More than one reduction variable: comma-separated List
!$OMP do reduction (+ : x, y, z)

More than one reduction method:
!$OMP do reduction (+ : x, y) reduction(max : z)

Operation specified in clause must be consistent with
actually performed operation in Fortran code!

associativity and commutativity / ordering

February 2006 ©2006 LRZ, RRZE, SGI and Intel 43

Reduction clause (4): Array reductions
i.e., using an array in the reduction clause

are allowed since OpenMP 2.0

Restrictions:
no deferred shape or assumed size or allocatable arrays

size must be known at compile time

beware performance/scalability issues for large arrays!

Short break

10 Minutes

Controlling OpenMP execution

Loop Scheduling

Synchronization

Conditional Parallelism

February 2006 ©2006 LRZ, RRZE, SGI and Intel 46

Default scheduling
of parallel loops

Division of work:
default decided by vendor

usually: static scheduling

divide iteration space into
largest possible chunks of
equal size

!$omp do
do i=1,9
...
end do

!$omp end do

Behaviour of Intel Compiler
default is

KMP_SCHEDULE=“static,greedy”

optionally use

KMP_SCHEDULE=“static,balanced”

Number of Iterations

greedy

balanced

Thr. 0 Thr. 1 Thr. 2 Thr. 3

3 3 3 0

3 2 2 2

T 0 T 1 T 2
do i=1,3 do i=4,6 do i=7,9
...
end do end do end do

non-
standard
runtime
setting

February 2006 ©2006 LRZ, RRZE, SGI and Intel 47

User-determined scheduling (1)
Varying chunk sizes

What if we want to fix chunk size ourselves?
use the schedule clause

!$OMP do schedule(static,chunk)
chunk is optional, of integer type, positive value, unchanged
during loop execution

if omitted, one chunk of greatest possible size assigned to each
thread

otherwise assignment of chunks to threads in round-robin order

Potentially beneficial effect:
together with suitably inserted pre-fetches, non-maximal chunks
may lead to improved overall data locality

February 2006 ©2006 LRZ, RRZE, SGI and Intel 48

User-determined scheduling (2)
Coping with load imbalances

How about this:
!$omp do
do i=1,n
if (iw(i) > 0) then
call smallwork(...)

else
call bigwork(...)

end if
end do
!$omp end do

static scheduling will
probably give a load
imbalance

idling threads

Fix this using a dynamic schedule
!$OMP do &
!$OMP schedule(dynamic,chunk)

chunk is optional (as before)

if omitted, chunk is set to 1

each thread, upon completing its
chunk of work, dynamically gets
assigned the next one

in particular, the assignment may
change from run to run of the
program

Recommendations:
sufficiently fat loop body

execution overhead much higher than
for static scheduling (extra per-chunk
synchronization required!)

February 2006 ©2006 LRZ, RRZE, SGI and Intel 49

User-determined scheduling (3)
Guided schedule

Number of chunks in simple
dynamic scheduling

too small large overhead

too large load imbalance

possible solution:
dynamically vary chunk size

guided schedule

If
N = iteration count

P = thread count

start with chunk size

and dynamically continue
with

This yields
exponentially decreasing chunk
size

and hence number of chunks
may be greatly decreased
(grows logarithmically with N!)

all iterations are covered

Syntax of guided clause:
!$OMP do &
!$OMP schedule(guided,chunk)

if chunk is specified, it means
the minimum chunk size

correspondingly, C0 may need
to be adjusted

P
NC =0

1
11 −⋅⎟
⎠
⎞

⎜
⎝
⎛ −= kk C

P
C

February 2006 ©2006 LRZ, RRZE, SGI and Intel 50

User-determined scheduling (4)
Deferring the scheduling decision to run time

Run time scheduling via

!$OMP do &
!$OMP schedule(runtime)

will induce the program to
determine the scheduling at
run time according to the
setting of the

OMP_SCHEDULE
environment variable

Disadvantage: chunk sizes
are fixed throughout
program

Possible values of

OMP_SCHEDULE
and their meaning

“static,120” static schedule,
chunk size 120

“dynamic” dynamic
schedule,
chunk size 1

“guided,3” guided
schedule,
minimum
chunk size 3

February 2006 ©2006 LRZ, RRZE, SGI and Intel 51

Synchronization (1)
Barriers

Remember: at the end of an OpenMP parallel loop all
threads synchronize

consistent access to all information in variables with shared
scope is guaranteed to (parallel) execution flow after loop

This can also be explicitly programmed by the user:
!$OMP BARRIER

synchronization requirement:

the execution flow of each thread blocks upon reaching the
barrier until all threads have reached the barrier

barrier may not appear within !$omp single or !$omp do block
(deadlock!)

February 2006 ©2006 LRZ, RRZE, SGI and Intel 52

Synchronization (2):
Relaxing synchronization requirements

end do (and: end sections, end single, end workshare)
imply a barrier by default
this may be omitted if the nowait clause is specified

potential performance improvement
especially if load imbalance occurs within construct

Beware: race conditions!

!$omp parallel
!$omp do shared(a)
... (loop)
a(i) = ...

!$omp end do nowait
... (some other parallel work)

!$omp barrier
... = a(i)

!$omp end parallel

threads continue
without waiting

Thread 0

Thread 1

February 2006 ©2006 LRZ, RRZE, SGI and Intel 53

Synchronization (3):
The “master” and “single” directives

Single directive:
only one thread executes

others synchronize

Master directive
similar to single, but

only thread 0 executes

others continue

binds only to current team

not all threads must reach

code section

Single:
may not appear within a parallel do (deadlock!)

nowait clause after end single suppresses synchronization

copyprivate(var) clause after end single provides value of private
variable var to other threads in team (OpenMP 2.0)

February 2006 ©2006 LRZ, RRZE, SGI and Intel 54

Synchronization (4)
The “critical” and “atomic” directives

These have already been encountered
each thread executes code (in contrast to single)

but only one at a time within code

with synchronization of each when exiting code block

atomic: code block must be a single line update

Fortran:

!$omp critical

block

!$omp end critical

!$omp atomic

x = x <op> ...

C/C++:

pragma omp critical

block

pragma omp atomic

x = x <op> ... ;

February 2006 ©2006 LRZ, RRZE, SGI and Intel 55

Statements must be within body of a loop
Acts as single directive, threads do work ordered as in seq. execution

Requires ordered clause to $!OMP do
Only effective if code is executed in parallel

Only one ordered region per loop

Execution scheme:

!$OMP do ordered
do I=1,N
O1

!$OMP ordered
O2

!$OMP end ordered
O3

end do
!$OMP end do

Synchronization (5)
The “ordered” directive

i=1 i=2 i=3 i=N...

O1 O1
O1O2

O2
O2

O2

O3 O3
O3

O3Barrier

Tim
e

...

February 2006 ©2006 LRZ, RRZE, SGI and Intel 56

Two typical applications of “ordered”

Loop contains recursion
not parallelizable

but should be only small
part of loop

!$OMP do ordered
do I=2,N

... (large block)
!$OMP ordered

a(I) = a(I-1) + ...
!$OMP end ordered
end do
!$OMP end do

Loop contains I/O
results should be consistent
with serial execution

!$OMP do ordered
do I=1,N

... (calculate a(:,I))
!$OMP ordered

write(unit,...) a(:,I)
!$OMP end ordered
end do
!$OMP end do

February 2006 ©2006 LRZ, RRZE, SGI and Intel 57

Synchronization (6)
Why do we need it?

Remember OpenMP Memory Model
private (thread-local):

no access by other threads

shared: two views

temporary view: thread has modified data in
its registers (or other intermediate device)

content becomes inconsistent with that in
cache/memory

other threads: cannot know that their copy
of data is invalid

Note: on the cache level, the coherency
protocol guarantees this knowledge

Shared
Memory

Shared
Memory

T

T

T

T

February 2006 ©2006 LRZ, RRZE, SGI and Intel 58

Synchronization (7)
Consequences and Remedies

For threaded code without
synchronization this means

multiple threads writing to
same memory location
resulting value is unspecified

one thread reading and
another writing result on
(any) reading thread
unspecified

Flush Operation
performed on a set of
(shared) variables

flush-set

discard temporary view

modified values forced to
cache/memory (requires
exclusive ownership)

next read access must be
from cache/memory

further memory operations
only allowed after all involved
threads complete flush

restrictions on memory
instruction reordering (by
compiler)

February 2006 ©2006 LRZ, RRZE, SGI and Intel 59

Synchronization (8):
... and what must the programmer do?

OpenMP directive for explicit
flushing

!$OMP FLUSH [(var1,var2)]
applicable to all variables
with shared scope including

SAVE, COMMON/Module
globals

dummy arguments

pointer dereferences

If no variables specified,
flush-set

encompasses all shared
variables

which are accessible in the
scope of the FLUSH directive

Ensure consistent view of
memory

Assumption: Want to write
something with first thread,
read it with second

Order of execution required:
1. Thread 1 writes to shared

variable

2. Thread 1 flushes variable

3. Thread 2 flushes same
variable

4. Thread 2 reads variable

February 2006 ©2006 LRZ, RRZE, SGI and Intel 60

Synchronization (9):
Example for explicit flushing

integer :: isync(0:nthrmax)
...
isync(0) = 1 ! dummy for

! thread 0
!$omp parallel private(myid,neigh,...)
myid = omp_get_thread_num() + 1
neigh = myid - 1
isync(myid) = 0
!$omp barrier

... (work chunk 1)
isync(myid) = 1
!$omp flush(isync)
do while (isync(neigh) == 0)
!$omp flush(isync)

end do
... (work chunk 2, dependency!)

!$omp end parallel

per-thread information
Need to use OpenMP

library function

to each thread its own flush
variable + 1 dummy

February 2006 ©2006 LRZ, RRZE, SGI and Intel 61

Synchronization (10)
Implicit synchronization

Implicit barrier synchronization:
at the beginning and end of parallel regions

at the end of critical, do, single, sections blocks unless a nowait
clause is allowed and specified

all threads in the present team are flushed

Implicit flush synchronization:
as a consequence of barrier synchronization

but note that flush-set then encompasses all accessible shared
variables

hence explicit flushing (possibly only with a subset of threads in
a team) may reduce synchronization overhead improve
performance

February 2006 ©2006 LRZ, RRZE, SGI and Intel 62

Conditional parallelism:
The “if” clause

Syntax:
!$omp parallel if (condition)
... (block)
!$omp end parallel

Usage: disable parallelism dynamically
by using omp_in_parallel() library call to suppress nested
parallelism

define crossover points for optimal performance

may require manual or semi-automatic tuning

may not need multi-version code

Fortran scalar logical
expression

February 2006 ©2006 LRZ, RRZE, SGI and Intel 63

Example for crossover point:
Vector triad with 4 threads on IA64

... if (len .ge. 7000)

thread
startup
latencies

Going beyond loop-level parallelism

Further work sharing constructs

OpenMP library routines

Global Variables

February 2006 ©2006 LRZ, RRZE, SGI and Intel 65

Further possibilities for work distribution

parallel region is executed by all threads.
what possibilities exist to distribute work?
1. !$OMP do
2. parallel sections
3. workshare
4. For hard-boiled MPI programmers: by thread ID

parallel sections (within a parallel region):

!$OMP sections
!$OMP section

code (thread #0)
!$OMP section

code (thread #1)
...

!$OMP end sections

February 2006 ©2006 LRZ, RRZE, SGI and Intel 66

Parallel Sections:
Ground rules

clauses: private, firstprivate, lastprivate, nowait and
reduction
section Directives allowed only within lexical extent of
sections/end sections

more sections than threads:
last thread executes all excess sections sequentially (SR8000-specific)

Hence be careful about dependencies

more threads than sections:
Excess threads synchronize unless nowait clause was specified

as usual: no branching out of blocks

February 2006 ©2006 LRZ, RRZE, SGI and Intel 67

Handling Fortran 90 array syntax:
the “workshare” directive

Replace loop by array
expression

how do we parallelize this?

an OpenMP 2.0 feature

not available in C

end workshare can have
nowait clause

do i=1,n
a(i) = b(i)*c(i) + d(i)

end do
a(1:n) = b(1:n)*c(1:n) + d(1:n)

!$omp parallel
!$omp workshare
a(1:n) = b(1:n)*c(1:n) + d(1:n)
!$omp end workshare
!$omp end parallel

Intel Fortran Compiler:
supports directive in 9.0 release
but no performance increase registered

for above example

February 2006 ©2006 LRZ, RRZE, SGI and Intel 68

Semantics of “workshare” (1)

Division of enclosed code
block into units of work

units are executed in parallel

Array expressions, Elemental
functions

each element a unit of work

Array transformation
intrinsic (e.g., matmul)

may be divided into any
number of units of work

WHERE
mask expr., then masked
assignment workshared

FORALL
WHERE + iteration space

OpenMP directives as units of
work

!$omp workshare
!$omp atomic
x = x + a
!$omp atomic
y = y + b
!$omp atomic
z = z + c
!$omp end workshare

also possible with:
critical directive

parallel region nested
parallelism!

updates on
shared

variables
executed in

parallel

February 2006 ©2006 LRZ, RRZE, SGI and Intel 69

Semantics of “workshare” (2)

implementation must add necessary synchronization
points to preserve Fortran semantics

res = 0
n = size(aa)
!$omp parallel
!$omp workshare
aa(1:n) = bb(1:n) * cc(1:n)
!$omp atomic
res = res + sum(aa)
dd = cc * res
!$omp end workshare
!$omp end parallel

sync

sync

makes
implementation

difficult

February 2006 ©2006 LRZ, RRZE, SGI and Intel 70

Further remarks on “workshare”

Referencing private variables
should not be done (undefined value)

Assigning to private variables (in array expressions)
should not be done (undefined values)

Calling user defined functions / subroutines
should not be done unless ELEMENTAL

February 2006 ©2006 LRZ, RRZE, SGI and Intel 71

An extension to OpenMP:
Task queuing

This is an Intel-specific
directive

presently only available for
C/C++

submitted for inclusion in
next OpenMP standard (3.0)

Idea:
decouple work iteration from
work creation

remember restrictions for
!$omp do on loop control
structures?

one thread administers the
task queue

the others are assigned a task
(=unit of work) at a time
each

This generalizes work
sharing via

sections

loops

and can be applied to
while loops

C++ iterators

recursive functions
parallel region

taskq
task 1

task 4

...

February 2006 ©2006 LRZ, RRZE, SGI and Intel 72

Task queuing directives and clauses

Setting up the task queue is
performed via

#pragma omp parallel
{
#pragma intel omp taskq [cl.]
{ ... // seq. setup code

#pragma intel omp task [cl.]
{...
// independent unit of work

}
}

}

The taskq directive takes
the clauses

private, firstprivate,
lastprivate, reduction,
ordered, nowait

The task directive takes
the clauses

private: thread-local
default-constructed object

captureprivate: thread-local
copy-constructed object

all private, firstprivate and
lastprivate variables on a
taskq directive are by
default captureprivate on
enclosed task directives

sequential
consistency

February 2006 ©2006 LRZ, RRZE, SGI and Intel 73

unit
of

work

void foo(List *p)
{
#pragma intel omp parallel taskq shared(p)
{

while (p != NULL)
{

#pragma intel omp task captureprivate(p)
{

do_work1(p);
}
p = p->next;

}
}

}

Example for usage of task queuing

Note on recursive functions:
taskq directive can be nested
will always use the team

initially bound to

February 2006 ©2006 LRZ, RRZE, SGI and Intel 74

OpenMP library routines (1)

Querying routines
how many threads are there?

who am I?

where am I?

what resources are available?

Controlling parallel execution
set number of threads

set execution mode

implement own synchronization constructs

February 2006 ©2006 LRZ, RRZE, SGI and Intel 75

OpenMP library routines (2)

These function calls return type
INTEGER
num_th = OMP_GET_NUM_THREADS()

yields number of threads in present
environment

always 1 within sequentially executed
region

my_th = OMP_GET_THREAD_NUM()
yields index of executing thread

(0, ...,num_th-1)

num_pr = OMP_GET_NUM_PROCS()
yields number of processors available
for multithreading

Always 8 for SR8000, number of
processors in SSI for SGI (128 at LRZ)

How to reliably obtain the
available number of threads

e.g., at beginning of program

with a shared num_th

!$omp parallel
!$omp master
num_th=omp_get_num_threads()
!$omp flush(num_th)
!$omp end master
...
!$omp end parallel

February 2006 ©2006 LRZ, RRZE, SGI and Intel 76

OpenMP library routines (3)

max_th = OMP_GET_MAX_THREADS()
maximum number of threads potentially available
e.g., as set by operating environment/batch system

The subroutine call (must be in sequential part!)

call OMP_SET_NUM_THREADS(nthreads)

sets number of threads to a definite value
0 < nthreads ≤ omp_get_max_threads()

useful for specific algorithms

dynamic thread number assignment must be deactivated

overrides setting of OMP_NUM_THREADS

February 2006 ©2006 LRZ, RRZE, SGI and Intel 77

OpenMP library routines (4)

The logical function
am_i_par = OMP_IN_PARALLEL()

queries whether program is executed in parallel or sequentially

Timing routines (double precision functions):
ti = OMP_GET_WTIME()
returns elapsed wall clock time in seconds

arbitrary starting point calculate increments

not necessarily consistent between threads

ti_delta = OMP_GET_WTICK()
returns precision of the timer used by OMP_GET_WTIME()

February 2006 ©2006 LRZ, RRZE, SGI and Intel 78

OpenMP library routines (5)
Dynamic threading

Alternative to user specifying number of threads:

Runtime environment adjusts number of threads

For fixed (batch) configurations probably not useful

Activate this feature by calling

call omp_set_dynamic(.TRUE.)
check whether enabled by calling the logical function

am_i_dynamic = omp_get_dynamic()
If implementation does not support dynamic
threading, you will always get .FALSE. here

February 2006 ©2006 LRZ, RRZE, SGI and Intel 79

OpenMP library routines (6)

Function/Subroutine calls for
nested parallelism

locking

will be discussed later

February 2006 ©2006 LRZ, RRZE, SGI and Intel 80

OpenMP library routines (7)

Library calls:
destroy sequential consistence unless conditional compilation is used and
some care is taken (e.g., default values for thread ID and numbers)

Fortran 77 INCLUDE file / Fortran 90 module
correct data types for function calls!

Stub library
for purely serial execution if !$ construction not used

Intel Compiler
include files, stub library and Fortran 90 module

replace –openmp switch by –openmp_stubs
SR8000 Compiler

include files

stub library provided by LRZ. Link with

-L/usr/local/lib/OpenMP/ -lstub[_64]

no Fortran 90 module (but can generate yourself from include file)

February 2006 ©2006 LRZ, RRZE, SGI and Intel 81

Using global variables in threaded programs

Numerical integration once more:
use a canned routine (NAG: D01AHF)

do multiple integrations why not in parallel?

!$omp parallel do
do i=istart,iend

... (prepare)
call d01ahf(..., my_fun, ...)

end do
!$omp end parallel do

Pitfalls:
Is the vendor routine thread-safe? documentation/tests

How are function calls (my_fun) treated? discussed now

needs to be
function of a
single variable

February 2006 ©2006 LRZ, RRZE, SGI and Intel 82

Using global variables (2)

Very typically, function values are provided by API call

call fun_std_interface(arg, par1, par2, ..., result)

so need to introduce globals e.g., via COMMON:

real function my_fun(x) result(r)
double precision :: par1, par2, r, x
common /my_fun_com/ par1, par2

call fun_std_interface(x, par1, par2, ..., r)
end function my_fun

February 2006 ©2006 LRZ, RRZE, SGI and Intel 83

private(par1,par2)

Now, can we have

double precision :: par1, par2
common /my_fun_com/ par1, par2
...
!$omp parallel do
do i=istart,iend

par1 = ...
par2 = ...
call d01ahf(..., my_fun, ...)

end do
!$omp end parallel do

?

Using global variables (3)

will not work!
par1,par2 need
private scope

↔
COMMON is shared

will not work!
how can the compiler
know about what to do
elsewhere in the code?

February 2006 ©2006 LRZ, RRZE, SGI and Intel 84

Using global variables (4):
The “threadprivate” directive

Fix problem by declaring COMMON block threadprivate
double precision :: par1, par2
common /my_fun_com/ par1, par2
!$omp threadprivate (/my_fun_com/)

Notes:
This must happen for every routine that references /my_fun_com/

if possible use INCLUDE to prevent mistakes
Variables in threadprivate may not appear in private, shared
or reduction clauses
In serial region: values for thread 0 (master)
In parallel region: copies for each thread created, with undefined value
More than one parallel region:

no dynamic threading
number of threads must be constant for data persistence

Only named COMMON blocks can be privatized

February 2006 ©2006 LRZ, RRZE, SGI and Intel 85

What if I want to use (initial) values calculated in a sequential
part of the program?
par1 = 2.0d0
!$omp parallel do copyin(par1)
do i=istart,iend

par2 = ...
call d01ahf(..., my_fun, ...)
par1 = ... (may depend on integration result)

end do
!$omp end parallel do

par1 value for thread 0 is copied to all threads at beginning of
parallel region

(Alternative: DATA initialization. Not supported e.g. on SR8000 ...)

Using global variables (5):
The “copyin” clause

February 2006 ©2006 LRZ, RRZE, SGI and Intel 86

Using global variables (6):
... and how about module variables?

The following will work

module my_fun_module
double precision, save :: par1, par2

!$omp threadprivate (par1,par2)
contains
function my_fun(x) result(r)
double precision :: r, x

call fun_std_interface(x, par1, par2, ..., r)
end function my_fun

end module my_fun_module

– and is much more elegant – if an OpenMP 2.0 conforming
implementation is available

only necessary for
purely serial program

Advanced OpenMP concepts

Binding of Directives

Nested Parallelism

Programming with Locks

February 2006 ©2006 LRZ, RRZE, SGI and Intel 88

Binding of Directives (1)

Which parallel region does a directive refer to?
do, sections, single, master, barrier:
to (dynamically) closest enclosing parallel region, if one exists

“orphaning”:

only one thread if not bound to a parallel region

Note: close nesting of do, sections not allowed

ordered: binds to dynamically enclosing do
ordered: not in dynamical extent of critical region.

atomic,critical: exclusive access for all threads, not just
current team

February 2006 ©2006 LRZ, RRZE, SGI and Intel 89

subroutine foo(…)
…

!$OMP do
do I=1,N
…
end do

!$OMP end do

OpenMP directives in foo are
orphaned

since they may or may not
bind to a parallel region

decided at runtime

in both cases executed
correctly

!$OMP parallel
…
call foo(…)
…

!$OMP end parallel
call foo(…)

Inside parallel region:
foo called by all threads

Outside parallel region:
foo called by one thread

Binding of Directives (2)
Orphaning

February 2006 ©2006 LRZ, RRZE, SGI and Intel 90

subroutine foo(…)
…

!$OMP do
do I=1,N
…
end do

!$OMP end do

Binding of directives (3)
Example for incorrect nesting

!$OMP parallel
!$OMP do

do i=1,n
call foo(…)

end do
!$OMP end do
!$OMP end parallel

Not allowed:
do nested within a do

February 2006 ©2006 LRZ, RRZE, SGI and Intel 91

Nested parallelism (1)

!$OMP parallel num_threads(3)
code_1

!$OMP parallel num_threads(4)
code_2

!$OMP end parallel
code_3

!$OMP end parallel

code_1 and code_3 executed by
team of threads
code_2: each thread does work in
serial by default
nested parallelism enabled:
additional threads may be created

behaviour is implementation-
dependent

what could we wish for?
assumption: have 12 threads

February 2006 ©2006 LRZ, RRZE, SGI and Intel 92

Nested parallelism (2)

Controlling the number of
threads:

omp_set_num_threads(n)
only callable in serial region
num_threads(n) clause on
parallel region directive

OpenMP 2.0

Environment Variable:

OMP_NESTED
unset or set to “false”: disable
nested parallelism
set to “true”: enable nested
parallelism if supported by
implementation

Run time check/control via service
functions:

supp_nest=omp_get_nested()
call omp_set_nested(flag)

Need to re-check whether nesting
supported before disposing
thread distribution

February 2006 ©2006 LRZ, RRZE, SGI and Intel 93

Lock routines (1)

A shared lock variable can be used to implement
specifically designed synchronization mechanisms

In the following, var is an INTEGER of implementation-
dependent KIND

blocking

non-blocking

February 2006 ©2006 LRZ, RRZE, SGI and Intel 94

Lock routines (2)

OMP_INIT_LOCK(var)

initialize a lock
lock is labeled by var
objects protected by lock: defined by programmer

(red balls on previous slide)

initial state is unlocked
var not associated with a lock before this

subroutine is called
OMP_DESTROY_LOCK(var)
disassociate var from lock

var must have been initialized (see above)

February 2006 ©2006 LRZ, RRZE, SGI and Intel 95

Lock routines (3)

For all following calls: lock var must have been initialized

OMP_SET_LOCK(var):

blocks if lock not available
set ownership and continue execution if lock available
OMP_UNSET_LOCK(var):

release ownership of lock
ownership must have been established before
logical function
OMP_TEST_LOCK(var):

does not block, tries to set ownership
thread receiving failure can go away

and do something else

February 2006 ©2006 LRZ, RRZE, SGI and Intel 96

Lock routines (4)

nestable locks:
replace omp_*_lock(var) by omp_*_nest_lock(var)
thread owning a nestable lock may re-lock it multiple times

put differently:

a nestable lock is available if
either it is unlocked

or
it is owned by the thread executing
omp_get_nest_lock(var)
or omp_test_nest_lock(var)

re-locking increments nest count

releasing the lock decrements nest count

lock is unlocked once nest count is zero

nestable locks are an OpenMP 2.0 feature!

February 2006 ©2006 LRZ, RRZE, SGI and Intel 97

Final remarks

Con: Automatic parallelization?
use toolkits? (not available for SR8000)

some compilers also offer support for automatic parallelization

Con: Only a subset of proprietary functionality
e. g., SR8000 (COMPAS) no pipelining in OpenMP (implement using
barrier)

Performance: Beware of thread startup latencies!
Pro: Portability
Mixing OpenMP and MPI on SR8000:

only one thread should call MPI

even then: OS calls not necessarily thread-safe, hence the other threads
should not do anything sensitive

Mixing OpenMP and MPI on Altix:
choose suitable threading level

in future, full multi-threading will be available (performance tradeoff?)

February 2006 ©2006 LRZ, RRZE, SGI and Intel 98

This ends the basic OpenMP stuff

... and we continue with practical considerations

	Programming Shared Memory Systems with OpenMP
	What is OpenMP?
	OpenMP Standardization
	Further OpenMP resources
	General Concepts
	Two Paradigms for Parallel Programming�	as suggested (not determined!) by Hardware Design
	Shared Memory Model used by OpenMP
	OpenMP Architecture:�	Operating System and User Perspective
	OpenMP Program Execution�	Fork and Join
	Retaining sequential functionality
	OpenMP in the HPC context (1)�	Comparing parallelization methods
	OpenMP in the HPC context (2)�	Hybrid parallelization on clustered SMPs
	Levels of Interoperability�	between MPI and OpenMP (1)
	Levels of Interoperability�	between MPI and OpenMP (2)
	Levels of Interoperability�	between MPI and OpenMP (3)
	OpenMP availability at LRZ
	OpenMP availability at RRZE
	Programming with OpenMP
	Basic OpenMP functionality
	A first example (1)�	Numerical Integration
	A first example (2):�	serial and OpenMP parallel Code
	OpenMP Directives�	Syntax in Fortran
	OpenMP Directives�	Syntax in C/C++
	OpenMP Syntax:�	On Clauses
	OpenMP Syntax:�	Properties of “structured block”
	OpenMP parallel regions�	How to generate a Team of Threads
	OpenMP work sharing for loops
	Directives for Data scoping�	shared and private
	Defaults for data scoping
	Changing the scoping defaults
	Storage association of private data
	Notes on privatization of dynamic data
	A first example (4):�	Accumulating partial sums  critical directive
	Compiling OpenMP Code on the SGI Altix
	Running the OpenMP executable�	on the SGI Altix
	New example:�	Solving the heat conduction equation
	Heat conduction (2):�	algorithm for solution of IBVP
	Heat Conduction (3): �	data structures
	Heat Conduction (4): �	code for updates
	 Reduction clause (1)
	Reduction clause (2):�	what can be reduced?
	 Reduction clause (3): �	reduction rules
	Reduction clause (4): Array reductions�	i.e., using an array in the reduction clause
	Short break
	Controlling OpenMP execution
	Default scheduling�	of parallel loops
	User-determined scheduling (1)�	Varying chunk sizes
	User-determined scheduling (2)�	Coping with load imbalances
	User-determined scheduling (3)�	Guided schedule
	User-determined scheduling (4)�	Deferring the scheduling decision to run time
	Synchronization (1)�	Barriers
	Synchronization (2):�	Relaxing synchronization requirements
	Synchronization (3):�	The “master” and “single” directives
	Synchronization (4)�	The “critical” and “atomic” directives
	Synchronization (5)�	The “ordered” directive
	Two typical applications of “ordered”
	Synchronization (6)�	Why do we need it?
	Synchronization (7) �	Consequences and Remedies
	Synchronization (8):�	... and what must the programmer do?
	Synchronization (9):�	Example for explicit flushing
	Synchronization (10)�	Implicit synchronization
	Conditional parallelism:�	The “if” clause
	Example for crossover point:�	Vector triad with 4 threads on IA64
	Going beyond loop-level parallelism
	Further possibilities for work distribution
	Parallel Sections:�	Ground rules
	Handling Fortran 90 array syntax:�	the “workshare” directive
	Semantics of “workshare” (1)
	Semantics of “workshare” (2)
	Further remarks on “workshare”
	An extension to OpenMP:�	Task queuing
	Task queuing directives and clauses
	Example for usage of task queuing
	OpenMP library routines (1)
	OpenMP library routines (2)
	OpenMP library routines (3)
	OpenMP library routines (4)
	OpenMP library routines (5)�	Dynamic threading
	OpenMP library routines (6)
	OpenMP library routines (7)
	Using global variables in threaded programs
	Using global variables (2)
	Using global variables (3)
	Using global variables (4):�	The “threadprivate” directive
	Using global variables (5):�	The “copyin” clause
	Using global variables (6):�	... and how about module variables?
	Advanced OpenMP concepts
	Binding of Directives (1)
	Binding of Directives (2)�	 Orphaning
	Binding of directives (3)�	Example for incorrect nesting
	Nested parallelism (1)
	Nested parallelism (2)
	Lock routines (1)
	Lock routines (2)
	Lock routines (3)
	Lock routines (4)
	Final remarks
	This ends the basic OpenMP stuff

