Fluid-Structure Interaction of Thin Structures in Turbulent Flows

G. De Nayer, A. Kalmbach and M. Breuer

Department of Fluid Mechanics (PfS)
Helmut–Schmidt–University (HSU), Hamburg, Germany

M. Münsch
Institute of Fluid Mechanics
University of Erlangen–Nürnberg, Germany

S. Sicklinger, R. Wüchner, K.U. Bletzinger
Chair of Structural Analysis
Technical University of Munich, Germany

SuperMUC Review Workshop
Garching, July 2014
1 Motivation / Objectives

2 Computational Methodology

3 Validation
 - Definition of the Test Cases
 - Simulations and Comparison with Experiments (FSI-PfS-2a)

4 Conclusions
Motivation / Objectives

Computational Methodology

Validation
- Definition of the Test Cases
- Simulations and Comparison with Experiments (FSI-PfS-2a)

Conclusions
Tents / Sun Shades / Mobile Umbrellas

Motivation / Long-term Objectives
1 Motivation / Objectives

2 Computational Methodology

3 Validation
 • Definition of the Test Cases
 • Simulations and Comparison with Experiments (FSI-PfS-2a)

4 Conclusions
FSI in Turbulent Flows

\[\Delta x \]

CFD

Partitioned Approach

\[F_p, F_\tau \]

CSD

Publication

Computational Methodology: FSI with LES and Thin Structures
Computational Methodology:
FSI with LES and Thin Structures
Forces on the Estimation of structural displacements

Momentum Eq.
Runge–Kutta

Poisson Eq.

Grid adaptation

Predictor

Corrector

FASTEST–3D
FVM (2nd order)
Predict.–Correct.
LES
Block–struct. grids
ALE

Grid adaptation

Parton ailed Approach

Computational Methodology:
FSI with LES and Thin Structures
Forces on the Estimation of structural displacements

Momentum Eq.
Runge−Kutta
Poisson Eq.

Grid adaptation

Estimation of structural displacements

FASTEST−3D
FVM (2nd order)
Predict.−Correct.
LES
Block−struct. grids
ALE

Grid adaptation

Momentum Eq.
Runge−Kutta
u_i^*

Predictor

Corrector

Poisson Eq.
u_i, p

Forces on the structure

Grid adaptation

FSI−Subiteration Loop
(ensure dynamic equilibrium)

CoMA

Grid−to−Grid
Displacement Interpolation
(bilinear)

MPI

Underrelax. of Displacements

Grid−to−Grid
Fluid Force Interpolation
(conservative)

Index: n

FSI convergence?

yes

no

Index: k

Partitioned Approach

Computational Methodology:
FSI with LES and Thin Structures
1 Motivation / Objectives

2 Computational Methodology

3 Validation
 - Definition of the Test Cases
 - Simulations and Comparison with Experiments (FSI-PfS-2a)

4 Conclusions
1 Motivation / Objectives

2 Computational Methodology

3 Validation
 • Definition of the Test Cases
 • Simulations and Comparison with Experiments (FSI-PfS-2a)

4 Conclusions
FSI Test Cases for Turbulent Flows

- **FSI-PfS-1a**
 - Fixed cylinder (rigid)
 - EPDM-rubber (flexible)
 - $E = 16 \text{ MPa}$
 - $\nu = 0.48$
 - $Re = 30,470$
 - Quasi 2D-deformations
 - Small deformations
 - First swiveling mode

- **FSI-PfS-2a**
 - Fixed cylinder (rigid)
 - Para-rubber (flexible)
 - $E = 4.10 \text{ MPa}$
 - $\nu = 0.48$
 - $Re = 30,470$
 - 2D-deformations
 - Large deformations
 - Second swiveling mode

Parameters
- u_∞
- $\phi 22 \text{ mm}$
- 60 mm
- 2 mm
- 50 mm
- 10 mm
Publications for FSI-PfS-1a

Publications for FSI-PfS-2a

- http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_2-14
1 Motivation / Objectives

2 Computational Methodology

3 Validation
 - Definition of the Test Cases
 - Simulations and Comparison with Experiments (FSI-PfS-2a)

4 Conclusions
Axial pump with motor
Flow straightener
Test section

Water Channel

Flow measurement methods (PIV / V3V)
Laser displacement sensor

⇓

Experimental Data

High-speed video (real frequency 11.25 Hz)

FSI-PfS-2a: Experiments
Fluid/CFD:
- wall–resolved LES
- 13.5 million CVs
- 72 CVs in spanwise direction
- periodic boundary conditions

Structure/CSD:
- 7–parameter shell elements
- 30×10 quadrilateral four-node elements
- zero z–deformation vs. periodic b.c.
- (Rayleigh damping)

FSI-PfS-2a: Computational Setup
<table>
<thead>
<tr>
<th>93 cores needed for each simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 13.5 million CVs on 91 blocks → 91 processes for CFD</td>
</tr>
<tr>
<td>• 1 process for CSD</td>
</tr>
<tr>
<td>• 1 process for coupling program</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 seconds physical time computed for each simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CPU: 1000 hours wall-clock</td>
</tr>
<tr>
<td>• RAM: 242 Mbytes per core → 22 Gbytes for the entire simulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensitivity study on FSI-PfS-2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>• about 30 simulations with different parameters conducted</td>
</tr>
</tbody>
</table>
EXP: Raw Signal

CFD: Raw Signal

Monitoring Point (mid plane)

FSI-PfS-2a: Deflection of the Structure
FSI-PfS-2a: Deflection of the Structure
<table>
<thead>
<tr>
<th></th>
<th>St</th>
<th>f_{FSI}</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
<td>0.177</td>
<td>11.25</td>
<td>-</td>
</tr>
<tr>
<td>CFD</td>
<td>0.183</td>
<td>11.53</td>
<td>2.49</td>
</tr>
</tbody>
</table>
Frequency

<table>
<thead>
<tr>
<th></th>
<th>St</th>
<th>(f_{FSI})</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
<td>0.177</td>
<td>11.25</td>
<td>-</td>
</tr>
<tr>
<td>CFD</td>
<td>0.183</td>
<td>11.53</td>
<td>2.49</td>
</tr>
</tbody>
</table>

Displacements

| | \(\frac{U_y}{D} \big|_{max} \) | Error | \(\frac{U_y}{D} \big|_{min} \) | Error |
|-------|-------------------------------|-------|-------------------------------|-------|
| EXP | 0.667 | - | -0.629 | - |
| CFD | 0.670 | 0.5 | -0.674 | 7.2 |
Streamwise velocity in the midplane
FSI-PfS-2a: Comparison of Phase-averaged Data
$(t \approx 1/24 \ T)$
Streamwise velocity

Transverse velocity

FSI-PfS-2a: Comparison of Phase-averaged Data
(t \approx \frac{5}{24} \, T)
1 Motivation / Objectives

2 Computational Methodology

3 Validation
 • Definition of the Test Cases
 • Simulations and Comparison with Experiments (FSI-PfS-2a)

4 Conclusions
Computational Methodology for FSI and Thin Structures

- Each program **specialized** in its task
- Each program **parallelized** (MPI, OpenMP)
- **New** FSI coupling scheme developed
 - based on **explicit** time-marching scheme (predictor-corrector), but nevertheless **stable and strong** FSI algorithm
 - corrector step and structural computation directly connected in a FSI subiteration loop to achieve dynamic equilibrium
Computational Methodology for FSI and Thin Structures

- Each program **specialized** in its task
- Each program **parallelized** (MPI, OpenMP)
- **New** FSI coupling scheme developed
 - based on **explicit** time–marching scheme (predictor–corrector), but nevertheless **stable and strong** FSI algorithm
 - corrector step and structural computation directly connected in a FSI subiteration loop to achieve dynamic equilibrium

Validation

- Methodology validated for **laminar flows** (not presented here)
- Methodology validated for **turbulent flows** (FSI-PfS-2a,...)
- Generation of FSI test cases for the community with **experimental and numerical data available online** (ERCOFTAC/QNET wiki)

Conclusions
Outlook

- New coupling program (EMPIRE) → more flexibility in the coupling
- Reduce the CPU costs with the help of special wall models

Acknowledgments:
- Thanks to Jens Nikolas Wood for his support.
- Financially supported by the Deutsche Forschungsgemeinschaft (BR 1847/12-1)
- Computations on the Top-Level Computer SuperMUC at LRZ Munich.
Thanks for your attention