

Vectorisation labs: with SIMD and OpenMP pragmas

Objectives and learning goals

In this example we learn how to vectorise and parallelise regions using SIMD and
OpenMP pragmas

• To enable the compiler to generate diagnostic information
• Understand the vectorisation performance
• Understand vectorisation reports
• To control memory allocation on MIC

1. Lab 1

• Compile the program on the host without modifying the original code.
• Use the –no-vec flag to turn off the vectorisation:

o $mpicc –no-vec –qopenmp –mmic nBody.c –o nbody.exe
• run the program with: $micnativeloadex ./nbody.exe
and record execution time.
• Add the vector report flags: -qopt-report –qopt-report-phase:vec

o $mpicc –no-vec –qopt-report –qopt-report-phase:vec –qopenmp –mmic
nBody.c –o nbody.exe

• Display the otimisation report file “nbody.optrpt” and try to understand the
vectorised regions.

• Remove the –no-vec and –qopt-report flags and repeat the execution step above
to record the execution time in the end. Check the performance results.

• Display the source code and switch on the parallelisations lines.
• Compile the program only with:

o $mpicc –qopenmp –mmic nBody.c –o nbody.exe
o and repeat the execution line above.

• Check the performance results.

What about the performance.

-2-

2. Lab	 2	

• Display nbody.c code and replace the LRZ WORK FOR YOU comments with

SIMD and OpenMP calls.
• Display the Makefile
• Add the vector report flags: -qopt-report –qopt-report-phase:vec
• Compile the program: make
• Display the output reports and try to understand the vectorised regions.
• Display the Makefile, remove the vector report flags and compile again
• Run: make run
• Check the performance results
• Set the following environment:
export MIC_KMP_AFFINITY=explicit,granularity=fine,proclist=[1-236:1]
export KMP_AFFINITY=granularity=fine,compact,1,0
• What about the performance.

Try now to understand the performance numbers observed for the host and native
execution.

