PRACE PATC Course
Intel MIC Programming Workshop

June 26-28, 2017, LRZ
LRZ in the HPC Environment

Leibniz Supercomputing Centre
of the Bavarian Academy of Sciences and Humanities

Bavarian Contribution to National Infrastructure

GCS
Gauss Centre for Supercomputing

HLRS@Stuttgart JSC@Jülich LRZ@Garching

German Contribution to European Infrastructure

PRACE
Partnership for Advanced Computing in Europe

PRACE has 25 members, representing European Union Member States and Associated Countries.

26.-28.6.2017
Intel MIC Programming Workshop @ LRZ
Advanced Training Centre (PATC) Courses

LRZ is part of the Gauss Centre for Supercomputing (GCS), which is one of the six PRACE Advanced Training Centres (PATCs) that started in 2012:

- Barcelona Supercomputing Center (Spain), CINECA
- Consorzio Interuniversitario (Italy)
- CSC – IT Center for Science Ltd (Finland)
- EPCC at the University of Edinburgh (UK)
- Gauss Centre for Supercomputing (Germany)
- Maison de la Simulation (France)

Mission: Serve as **European hubs and key drivers of advanced high-quality training** for researchers working in the computational sciences.

http://www.training.prace-ri.eu/
Tentative Agenda: Monday

- **Monday, June 26, 2017, Kursraum 2, H.U.010 (course room)**
 - 09:00-10:00 Welcome & Introduction (Weinberg)
 - 10:00-10:30 Overview of the Intel MIC architecture (Allalen)
 - **10:30-11:00 Coffee break**
 - 11:00-11:30 Overview of the Intel MIC programming models (Allalen)
 - 11:30-12:00 Native mode KNC and KNL programming (Allalen)
 - **12:00-13:00 Lunch break**
 - 13:00-14:00 KNL Memory Modes and Cluster Modes, MCDRAM (Weinberg)
 - 14:00-15:30 Offloading (Weinberg)
 - **15:30-16:00 Coffee break**
 - 16:00-17:00 MKL (Allalen)
Tentative Agenda: Tuesday

- Tuesday, June 27, 2017, Kursraum 2, H.U.010 (course room)

- 09:00-10:30 Vectorisation and Intel Xeon Phi performance optimisation (Allalen)
- 10:30-11:00 Coffee break
- 11:00-12:00 Guided SuperMUC/MIC Tour (Weinberg/Allalen)

- 12:00-13:00 Lunch break

- 13:00-15:30 KNL code optimisation process (Baruffa)
- 15:30-16:00 Coffee Break
- 16:00-17:00 Profiling tools: Intel Advisor (Baruffa)

- 18:00 - open end at GARNIX https://www.garnix-festival.de/
Tentative Agenda: Wednesday

- Wednesday, June 28, 2017, 09:00-12:00, Hörsaal, H.E.009 (Lecture Hall)

- 09:00-10:30 Many-core Programming with OpenMP 4.x (Michael Klemm, Intel)
- 10:30-10:45 Coffee Break
- 10:45-12:00 Advanced KNL programming techniques (Intrinsics, Assembler, AVX-512,...) (Jan Eitzinger, RRZE)

- 12:00-13:00 Lunch Break
Tentative Agenda: Wednesday

- **Wednesday, June 28, 2017, 13:00-18:00, Hörsaal, H.E.009 (Lecture Hall)**
- Plenum session with invited talks on MIC experience and best practice recommendations (joint session with the Scientific Workshop "HPC for natural hazard assessment and disaster mitigation"), public session
- 13:00-13:30 Luigi Iapichino, IPCC@LRZ: "Performance Optimization of Smoothed Particle Hydrodynamics and Experiences on Many-Core Architectures"
- 13:30-14:00 Michael Bader/Carsten Uphoff, IPCC@TUM: "Extreme-scale Multi-physics Simulation of the 2004 Sumatra Earthquake"
- 14:00-14:30 Vit Vondrak/Branislav Jansik, IPCC@IT4I: "Development of Intel Xeon Phi Accelerated Algorithms and Applications at IT4I"
- 14:30-15:00 Michael Klemm, Intel: "Application Show Cases on Intel® Xeon Phi™ Processors"
- 15:00-15:30 Coffee Break
- 15:30-16:00 Jan Eitzinger, RRZE: "Evaluation of Intel Xeon Phi "Knights Landing": Initial impressions and benchmarking results"
- 16:00-16:30 Piotr Korcył, University of Regensburg: "Lattice Quantum Chromodynamics on the MIC architectures"
- 16:30-17:00 Nils Moschüring, IPP: "The experience of the HLST on Europes biggest KNL cluster"
- 17:00-17:30 Andreas Marek, Max Planck Computing and Data Facility (MPCDF), "Porting the ELPA library to the KNL architecture"
- 17:30-18:00 Q&A, Wrap-up
Information

● **Lecturers:**
 – Dr. Momme Allalen, Dr. Fabio Baruffa, Dr. Volker Weinberg (LRZ)
 – Dr.-Ing. Jan Eitzinger (RRZE)
 – Dr.-Ing. Michael Klemm (Intel Corp.)

● **Complete lecture slides & exercise sheets:**
 – https://www.lrz.de/services/compute/courses/x_lecturenotes/mic_workshop_2017/
 – http://tinyurl.com/yd6lfweq

● **Examples under:**
 – /lrz/sys/courses/MIC_Workshop
Intel Xeon Phi @ LRZ and EU
Intel Xeon Phi and GPU Training @ LRZ

28.-30.4.2014 @ LRZ (PATC): KNC+GPU
27.-29.4.2015 @ LRZ (PATC): KNC+GPU
3.-4.2.2016 @ IT4Innovations: KNC
27.-29.6.2016 @ LRZ (PATC): KNC+KNL
28.9.2016 @ PRACE Seasonal School, Hagenberg: KNC
7.-8.2.2017 @ IT4Innovations (PATC): KNC
26.-28.6.2017 @ LRZ (PATC): KNL
June 2018 @ LRZ (PATC tbc.): KNL

http://inside.hlrs.de/
inSiDE, Vol. 12, No. 2, p. 102, 2014
inSiDE, Vol. 15, No. 1, p. 48ff, 2017
Evaluating Accelerators at LRZ

Research at LRZ within PRACE & KONWIHR:

- **CELL programming**
 - IBM announced to discontinue CELL in Nov. 2009.

- **GPGPU programming**
 - Regular GPGPU computing courses at LRZ since 2009.
 - Evaluation of GPGPU programming languages:
 - CAPS HMPP
 - PGI accelerator compiler
 - CUDA, cuBLAS, cuFFT
 - PyCUDA/R
 \{ \rightarrow \text{OpenACC, OpenMP 4.x} \}

- **Intel Xeon Phi programming**
IPCC (Intel Parallel Computing Centre)

- **New Intel Parallel Computing Centre (IPCC) since July 2014:**
 Extreme Scaling on MIC/x86
- **Chair of Scientific Computing** at the Department of Informatics in the Technische Universität München (TUM) & LRZ
- https://software.intel.com/de-de/ipcc#centers
- **Codes:**
 - Simulation of Dynamic Ruptures and Seismic Motion in Complex Domains: **SeisSol**
 - Numerical Simulation of Cosmological Structure Formation: **GADGET**
 - Molecular Dynamics Simulation for Chemical Engineering: **ls1 mardyn**
 - Data Mining in High Dimensional Domains Using Sparse Grids: **SG++**

26.-28.6.2017 Intel MIC Programming Workshop @ LRZ
Czech-Bavarian Competence Team for Supercomputing Applications (CzeBaCCA)

New BMBF funded project that started in Jan. 2016 to:

- Foster Czech-German Collaboration in Simulation Supercomputing
 - series of workshops will initiate and deepen collaboration between Czech and German computational scientists

- Establish Well-Trained Supercomputing Communities
 - joint training program will extend and improve trainings on both sides

- Improve Simulation Software
 - establish and disseminate role models and best practices of simulation software in supercomputing
CzeBaCCA Trainings and Workshops

- **Intel MIC Programming Workshop**, 3 – 4 February 2016, Ostrava, Czech Republic
- Scientific Workshop: SeisMIC - Seismic Simulation on Current and Future Supercomputers, 5 February 2016, Ostrava, Czech Republic
- **PRACE PATC Course: Intel MIC Programming Workshop**, 27 - 29 June 2016, Garching, Germany
- Scientific Workshop: High Performance Computing for Water Related Hazards, 29 June - 1 July 2016, Garching, Germany
- **PRACE PATC Course: Intel MIC Programming Workshop**, 7 – 8 February 2017, Ostrava, Czech Republic
- Scientific Workshop: High performance computing in atmosphere modelling and air related environmental hazards, 9 February 2017, Ostrava, Czech Republic
- **PRACE PATC Course: Intel MIC Programming Workshop**, 26 – 28 June 2017, Garching, Germany
- Scientific Workshop: HPC for natural hazard assessment and disaster migration, 28 - 30 June 2017, Garching, Germany

26.-28.6.2017

Intel MIC Programming Workshop @ LRZ
CzeBaCCA Trainings and Workshops

1st workshop series: February 2016 @ IT4I

https://www.lrz.de/forschung/projekte/forschung-hpc/CzeBaCCA/
http://www.gate-germany.de/fileadmin/dokumente/Laenderprofile/Laenderprofil_Tschechien.pdf, p.27

26.-28.6.2017
Intel MIC Programming Workshop @ LRZ
CzeBaCCA Trainings and Workshops

2nd workshop series: June 2016 @ LRZ

https://www.lrz.de/forschung/projekte/forschung-hpc/CzeBaCCA/
http://www.gate-germany.de/fileadmin/dokumente/Laenderprofile/Laenderprofil_Tschechien.pdf, p.27
CzeBaCCA Trainings and Workshops

3rd workshop series: February 2017 @ IT4I

https://www.lrz.de/forschung/projekte/forschung-hpc/CzeBaCCA/
http://www.gate-germany.de/fileadmin/dokumente/Laenderprofile/Laenderprofil_Tschechien.pdf, p.27
Intel Xeon Phi @ Top500 June 2017

- https://www.top500.org/list/2017/06/
- #2: **Tianhe-2** (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P, National Super Computer Center in Guangzhou, China
- #6: **Cori** - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect, Cray Inc., DOE/SC/LBNL/NERSC, United States
- #7: **Oakforest-PACS** - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path, Fujitsu, Joint Center for Advanced High Performance Computing, Japan
- #12: **Stampede2** - PowerEdge C6320P, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path, Dell, Texas Advanced Computing Center/Univ. of Texas, United States
- #14: **Marconi** - Intel Xeon Phi - CINECA Cluster, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path, Lenovo, CINECA, Italy
- … several non European systems …
- #78: **Salomon** - SGI ICE X, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR, Intel Xeon Phi 7120P, HPE, IT4Innovations National Supercomputing Center, VSB-Technical University of Ostrava, Czech Republic
PRACE: Best Practice Guides

New guides will be written in PRACE-5IP.
The following 4 Best Practice Guides (BPGs) have been written within PRACE-4IP by 13 authors from 8 institutions and have been published in pdf and html format in January 2017 on the PRACE website:

- Intel® Xeon Phi™ BPG
 Update of the PRACE-3IP BPG
- Haswell/Broadwell BPG
 Written from scratch
- Knights Landing BPG
 Written from scratch
- GPGPU BPG
 Update of the PRACE-2IP mini-guide

 Intel MIC within PRACE:
Intel Xeon Phi (KNC) Best Practice Guide

- Created within PRACE-3IP+4IP.
- Written in Docbook XML.
- 122 pages, 13 authors
- Now including information about existing Xeon Phi based systems in Europe: Avitohol @ BAS (NCSA), MareNostrum @ BSC, Salomon @ IT4Innovations, SuperMIC @ LRZ

Intel MIC within PRACE:
Knights Landing Best Practice Guide

- Created within PRACE-4IP.
- Written in Docbook XML.
- 85 pages, 3 authors
- General information about the KNL architecture and programming environment
- Benchmark & Application Performance results
SuperMIC ∈ SuperMUC @ LRZ
SuperMUC System Overview

Intel MIC Programming Workshop @ LRZ
SuperMUC Phase 2: Moving to Haswell

LRZ infrastructure
(NAS, Archive, Visualization)

Internet / Grid Services

Spine infiniband switches

pruned tree

Mellanox FDR14 Island switch

non blocking

Haswell-EP
24 cores/node
2.67 GB/core

6 Haswell islands
512 nodes per island
warm water cooling

GPFS for
$WORK
$SCRATCH

I/O Servers
(weak coupling of phases 1+2)

I/O servers
Login nodes
Support nodes

Parallel Storage

Storage, etc.
Infiniband switches

Mellanox FDR10 Island switch

non blocking

Thin + Fat islands of SuperMC
SuperMUC Phase 2: Moving to Haswell
SuperMIC: Intel Xeon Phi Cluster
SuperMIC: Prototype Intel Phi (KNC) System

SuperMUC FDR Infiniband switches (2nd level)
Melanox FDR Infiniband switches

32 Ivy Bridge Nodes with 64 Knight's Corner Many-core accelerators (4352 Cores)
Management and login node

10 GE Gateway (NAS, Network)

Dual rail connection
SuperMIC ∈ SuperMUC @ LRZ

● 32 compute nodes (diskless)
 – SLES11 SP3
 – 2 Ivy-Bridge host processors E5-2650@2.6 GHz with 16 cores
 – 2 Intel Xeon Phi 5110P coprocessors per node with 60 cores
 – 64 GB (Host) + 2 * 8 GB (Xeon Phi) memory
 – 2 MLNX CX3 FDR PCIe cards attached to each CPU socket

● Interconnect
 – Mellanox Infiniband FDR14
 – Through Bridge Interface all nodes and MICs are directly accessible

● 1 Login- and 1 Management-Server (Batch-System, xCAT, …)

● Air-cooled

● Supports both native and offload mode

● Batch-system: LoadLeveler
SuperMIC Network Access

SuperMIC Login Node

SuperMIC Login Node

32 Intel Xeon Compute Nodes

64 Intel Xeon Phi Coprocessors

supermuc.lrz.de

supermuc.smuc.lrz.de (login1,2)

i01r13a01

i01r13a01-mik0

i01r13a01-mik1

i01r13a16

i01r13a16-mik0

i01r13a16-mik1

i01r13c01

i01r13c01-mik0

i01r13c01-mik1

i01r13c16

i01r13c16-mik0

i01r13c16-mik1

26.-28.6.2017
SuperMIC Access

- **Description of SuperMIC:**
 - https://www.lrz.de/services/compute/supermuc/supermic/

- **Training Login Information:**
 - https://www.lrz.de/services/compute/supermuc/supermic/training-login/

- Use course account on paper snippets
First login to Linux-Cluster (directly reachable from the course PCs, use only account a2c06aa!):

```
ssh lxlogin1.lrz.de -l a2c06aa
```

Then:

```
ssh mcct03.cos.lrz.de or ssh mcct04.cos.lrz.de
```

Processor: Intel(R) Xeon Phi(TM) CPU 7210. 64 cores, 4 threads per core.
Frequency: 1 - 1.5 GHz

KNL: 64 cores x 1.3 GHz x 8 (SIMD) x 2 x 2 (FMA) = 2662.4 GFLOP/s

Compare with:

KNC: 60 cores x 1 GHz x 8 (SIMD) x 2 (FMA) = 960 GFLOP/s

Sandy-Bridge: 2 sockets x 8 cores x 2.7 GHz x 4 (SIMD) x 2 (ALUs) = 345.6 GFLOP/s
Xeon Phi References

- Books:

- Training material by CAPS, TACC, EPCC
- Intel Training Material and Webinars
Acknowledgements

- **IT4Innovation**, Ostrava.
- Partnership for Advanced Computing in Europe (**PRACE**)
- Intel
- **BMBF** (Federal Ministry of Education and Research)
- Dr. Karl Fürlinger (LMU)
- J. Cazes, R. Evans, K. Milfeld, C. Proctor (TACC)
- Adrian Jackson (EPCC)
And now …

Enjoy the course!