

MIC-Native and Offload-lab: Running simple C Programs in
Native and Offload Mode

In this lab you run simple programs in native and offload mode.
We then go on to offload a matrix-matrix multiplication and perform a scaling analysis.

Appropriate Environment

Start 3 xterm windows:

 1 xterm with a shell on the login node supermic.smuc.lrz.de

 1 xterm with a shell on a compute node i01r13??? (submit a job and look at llq to
figure out the hostname of the allocated compute node)

 1 xterm with a shell on the associated MIC i01r13???-mic0

Attention:

 Compile on supermic.smuc.lrz.de

 Run on Compute nodes i01r13c?? for Offload and MPI

 Run on MICs i01r13c??-mic0/1 for Native Mode

Lab 1: Running MIC binaries natively

 Compile the program hello.c for MIC using
icpc –mmic hello.c -o hello-mic

 Try to launch the program on the host.

 Copy the program to a MIC, e.g. i01r13c01-mic0 using scp.

 Login to the MIC and execute the program.

 Execute the program on the host using micnativeloadex. Look at the output of
micnativeloadex program -l.

 Get information about the number of cores on a MIC by using the tools micinfo,
micinfo –listdevices, micsmc –a on the host.

-2-

 Login to the MIC and get information about the cores, memory etc. by inspecting
files like /proc/cpufino, /proc/meminfo or using tools like top.

 Modify the hello world program, so that also the number of logical cores is printed
out. Run the program on the host and on the MIC.

 Compile the program pthreadspin.c using “icpc –mmic –O0 –lpthread” for the
MIC architecture. Run the program using micnativeloadex. Login to the MIC and
watch the CPU load using top and ps. Look on the threads using ps –eLF.

Lab 2: Offloading simple code to Intel Xeon Phi

 Add a new code block which prints “MIC: Hello world from MIC” to the hello world
program. Add an offload pragma for the MIC architecture.

 Run the code on the login node vs. the compute nodes.

 Extend the “hello world” functions to print out the hostname and the numbers of
cores of the MIC and the host.

 Compile using one of the compiler options –offload=optional, -offload=mandatory
(Default) and –offload=none. Run each time on the login node and a compute
node.

 Try to figure out more about the environment under which offloaded code is
running. Offload system(“cmd”) calls to get info from commands like set,
hostname, uname –a, whoami, id etc.

-3-

Lab 3: Offloading simple numerical code to Intel Xeon Phi

 Use the exercises c1.c and c2.c.

 Exchange the OpenACC pragmas “#pragma acc kernels” with an appropriate
Intel Offload pragma.

 Compile using “icpc –restrict”. How many threads are executing the binary?

 Parallelise using the appropriate OpenMP worksharing construct. To set the
number of threads on the MIC you can use:

o export MIC_ENV_PREFIX=MIC
o export MIC_OMP_NUM_THREADS=…

 Export OFFLOAD_REPORT=2 and rerun the 2 programs. Dito for H_TRACE=1
and H_TIME=1.

Lab 4: Offloading MxM code to Intel Xeon Phi

 Parallelize the matrix-matrix multiplication matrixmul.cpp using OpenMP.

 Compile using icpc –mmic –vec-report3 [-offload=optional] -openmp

 Run the program on the MIC natively or via micnativeloadex.

 Watch the program again on the MIC and via micsmc -a.

 Add an appropriate offload target(mic) pragma around the region with the for-
loops.

 Add a function call checkoffload(void) to the Offload region which checks if the
code is really running on the Coprocessor. The routine should print out where it is
running depending on the value of __MIC__.

 Also print out the number of current / max OMP threads
(omp_get_num_threads(), omp_get_max_threads).

 Test the stong scaling of the code. Run the code with different numbers of
threads, but with same matrix size 2000. Write a small script that exports
OMP_NUM_THREADS and starts the program for the following sizes.

Number of Threads Runtime(s)

1

2

4

8

16

32

64

128

236

 Write the data into a file and plot it, e.g. with gnuplot (module load gnuplot).

 Repeat for larger matrix sizes.

 Compare with the native Host / Xeon Phi performance.

