Experiences with Earthquake and Tsunami Simulation on Xeon Phi Platforms

Special session on MIC experience and best practice

Michael Bader (and co-authors listed with chapters)
Technical University of Munich

LRZ, 29 June 2016
Overview and Agenda

Dynamic Rupture and Earthquake Simulation with SeisSol:

- unstructured tetrahedral meshes
- high-order ADER-DG discretisation
- compute-bound performance via optimized matrix kernels

Optimising SeisSol for Xeon Phi Platforms

- offload scheme: 1992 Landers Earthquake as landmark simulation, scalability on SuperMUC, Tianhe-2, Stampede
- optimisation for Knights Corner and Landing
- towards simulations in symmetric mode (1st results on Salomon)

Tsunami Simulation on SuperMIC:

- parallel adaptive mesh refinement with sam(oa)2
- enable vectorization via introducing patches
- towards load balancing on heterogeneous systems
Part I

Dynamic Rupture and Earthquake Simulation with SeisSol

http://www.seissol.org/

Dumbser, Käser et al. [9]
An arbitrary high-order discontinuous Galerkin method . . .

Pelties, Gabriel et al. [12]
Verification of an ADER-DG method for complex dynamic rupture problems
Dynamic Rupture and Earthquake Simulation

Landers fault system: simulated ground motion and seismic waves [3]

SeisSol – ADER-DG for seismic simulations:

- adaptive tetrahedral meshes
 → complex geometries, heterogeneous media, multiphysics
- complicated fault systems with multiple branches
 → non-linear multiphysics dynamic rupture simulation
- ADER-DG: high-order discretisation in space and time
Example: 1992 Landers M7.2 Earthquake

- multiphysics simulation of dynamic rupture and resulting ground motion of a M7.2 earthquake
- fault inferred from measured data, regional topography from satellite data, physically consistent stress and friction parameters
- static mesh refinement at fault and near surface
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Multiphysics Dynamic Rupture Simulation

- spontaneous rupture, non-linear interaction with wave-field
- featuring rupture jumps, fault branching, etc.
- tackles fundamental questions on earthquake dynamics
- realistic rupture source for seismic hazard assessment
Part II

SeisSol as a Compute-Bound Code: Code Generation for Matrix Kernels

Breuer, Heinecke, Rannabauer, Bader [1]: High-Order ADER-DG Minimizes Energy- and Time-to-Solution of SeisSol (ISC’15)

Uphoff, Bader [6]: Generating high performance matrix kernels for earthquake simulations with viscoelastic attenuation (HPCS 2016)
Seismic Wave Propagation with SeisSol

Elastic Wave Equations: (velocity-stress formulation)

\[q_t + Aq_x + Bq_y + Cq_z = 0 \]

with \(q = (\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{12}, \sigma_{23}, \sigma_{13}, u, v, w)^T \)

\(A = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & -\lambda & -2\mu & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\mu & 0 & 0 \\
-\rho^{-1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\rho^{-1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\rho^{-1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\rho^{-1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\rho^{-1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\rho^{-1}
\end{pmatrix} \)

\(B = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\lambda & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\lambda & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\mu & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\mu \\
0 & -\rho^{-1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\rho^{-1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\rho^{-1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\rho^{-1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\rho^{-1}
\end{pmatrix} \)

- high order discontinuous Galerkin discretisation
- ADER-DG: high approximation order in space and time:
- additional features: local time stepping, high accuracy of earthquake faulting (full frictional sliding)

\(\rightarrow \) Dumbser, Käser et al., e.g. [9]
SeisSol in a Nutshell – ADER-DG

Update scheme

\[
Q_{k}^{n+1} = Q_{k} - \frac{|S_{k}|}{|J_{k}|} M^{-1} \left(\sum_{i=1}^{4} F^{-,i}(t^{n}, t^{n+1}, Q_{k}^{n}) N_{k,i} A_{k}^{+} N_{k,i}^{-1} + \sum_{i=1}^{4} F^{+,i,j,h}(t^{n}, t^{n+1}, Q_{k(i)}^{n}) N_{k,i} A_{k(i)}^{-} N_{k,i}^{-1} \right) \\
+ M^{-1} K^{\xi} I(t^{n}, t^{n+1}, Q_{k}^{n}) A_{k}^{*} \\
+ M^{-1} K^{\eta} I(t^{n}, t^{n+1}, Q_{k}^{n}) B_{k}^{*} \\
+ M^{-1} K^{\zeta} I(t^{n}, t^{n+1}, Q_{k}^{n}) C_{k}^{*}
\]

Cauchy-Kovalewski

\[
I(t^{n}, t^{n+1}, Q_{k}^{n}) = \sum_{j=0}^{J} \frac{(t^{n+1} - t^{n})^{j+1}}{(j + 1)!} \frac{\partial^{j}}{\partial t^{j}} Q_{k}(t^{n})
\]

\[
(Q_{k})_{t} = -M^{-1} \left((K^{\xi})^{T} Q_{k} A_{k}^{*} + (K^{\eta})^{T} Q_{k} B_{k}^{*} + (K^{\zeta})^{T} Q_{k} C_{k}^{*} \right)
\]
Optimisation of Matrix Operations

Apply sparse matrices to multiple DOF-vectors Q_k

Dense vs. Sparse Kernels: (Breuer et al. [2])

- most kernels fastest, if executed as dense matrix multiplications
- exploit zero-blocks generated during recursive CK computation
- switch to sparse kernels depending on achieved time to solution
Sparse, Dense \rightarrow Block-Sparse

Consider equivalent sparsity patterns: (Uphoff, [6])

Graph representation and block-sparse memory layouts
Code Generator: Instrinsics → Assembler
db = Tools.parseMatrixFile('matrices.xml')
Tools.memoryLayoutFromFile('layout.xml', db)
arch = Arch.getArchitectureByIdentifier('dhsw')
volume = db['kXiDivM']
 * db['timeIntegrated']
 * db['AstarT']
 + db['timeIntegrated']
 * db['ET']
kernels = [('volume', volume)]
Tools.generate(
 'path/to/output',
 db,
 kernels,
 'path/to/libxsmm_gemm_generator',
 arch
)

Benefit of High Order ADER-DG – Energy-Efficient

- measure maximum error vs. consumed energy
- for increasing discretisation order on regular meshes
- here: dual-socket “Haswell” server, 36 cores @1.9 GHz
Benefit of High Order ADER-DG – Energy-Efficient

- high order ("compute") beats high resolution ("memory")
- \(\approx 35\% \) gain in energy-to-solution for single precision, but only for low order
• measured “GFlop/s” and “MFlop/s per Watt” for Westmere, Sandy Bridge, Knights Corner and Haswell architectures [1]
• at selected clock frequencies and for different order
• preference towards high order and low frequency on newest architectures
Part III

Accelerators – Dynamic Rupture Simulation on Xeon Phi Supercomputers

Heinecke, Breuer, Rettenberger, Gabriel, Pelties et al. [3]: Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers (Gordon Bell Prize Finalist 2014)
On the Road from Peta- to Exascale?

SuperMUC @ LRZ, Munich
- 9216 compute nodes (18 “thin node” islands)
 - 147,456 Intel SNB-EP cores (2.7 GHz)
- Infiniband FDR10 interconnect (fat tree)
- #20 in Top 500: 2.897 PFlop/s

Stampede @ TACC, Austin
- 6400 compute nodes, 522,080 cores
 - 2 SNB-EP (8c) + 1 Xeon Phi SE10P per node
- Mellanox FDR 56 interconnect (fat tree)
- #8 in Top 500: 5.168 PFlop/s

Tianhe-2 @ NSCC, Guangzhou
- 8000 compute nodes used, 1.6 Mio cores
 - 2 IVB-EP (12c) + 3 Xeon Phi 31S1P per node
- TH2-Express custom interconnect
- #1 in Top 500: 33.862 PFlop/s
Optimization for Intel Xeon Phi Platforms

Offload Scheme:

• hide2 communication with Xeon Phi and between nodes
• use “heavy” CPU cores for dynamic rupture

Hybrid parallelism:

• on 1–3 Xeon Phis and host CPU(s)
• reflects multiphysics simulation
• manycore parallelism on Xeon Phi

M. Bader et al. | Earthquake and tsunami simulation on Xeon Phi | CzeBaCCA Workshop | 29 June 2016
Strong Scaling of Landers Scenario

- 191 million tetrahedrons; 220,982 element faces on fault
- 6th order, 96 billion degrees of freedom
Strong Scaling of Landers Scenario

- more than 85% parallel efficiency on Stampede and Tianhe-2 (when using only one Xeon Phi per node)
- multiple-Xeon-Phi performance suffers from MPI communication
Strong Scaling of Landers Scenario

- 3.3 PFlop/s on Tianhe-2 (7000 nodes)
- 2.0 PFlop/s on Stampede (6144 nodes)
- 1.3 PFlop/s on SuperMUC (9216 nodes)
Code Generation:

- 512-bit wide vector processing unit
- profits from Knights Landing optimization of libxsmm library [11]

Memory Optimization:

- examine impact of DRAM-only, CACHE and FLAT mode
- FLAT mode: careful placement of element-local matrices in local MCDRAM (table from [7]):

<table>
<thead>
<tr>
<th>order</th>
<th>Q_k</th>
<th>B_k, D_k</th>
<th>$A_{k, c}, \hat{A}{k, -i}, \hat{A}{k, +i}$</th>
<th>$\hat{K}{c, c}, \hat{K}{c, c}, \hat{F}{-i, i}, \hat{F}{+i, j,h}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MCDRAM</td>
<td>MCDRAM</td>
<td>MCDRAM</td>
<td>MCDRAM</td>
</tr>
<tr>
<td>3</td>
<td>MCDRAM</td>
<td>MCDRAM</td>
<td>MCDRAM</td>
<td>MCDRAM</td>
</tr>
<tr>
<td>4</td>
<td>DDR4</td>
<td>MCDRAM</td>
<td>MCDRAM</td>
<td>MCDRAM</td>
</tr>
<tr>
<td>5</td>
<td>DDR4</td>
<td>MCDRAM</td>
<td>DDR4</td>
<td>MCDRAM</td>
</tr>
<tr>
<td>6</td>
<td>DDR4</td>
<td>MCDRAM</td>
<td>DDR4</td>
<td>MCDRAM</td>
</tr>
</tbody>
</table>
Performance Results on Knights Landing

Heinecke et al., ISC 16 [7]

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Speedup (HSX)</th>
<th>Speedup (KNC)</th>
<th>Speedup (DDR4)</th>
<th>Speedup (CACHE)</th>
<th>Speedup (FLAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landers scenario</td>
<td>2.56</td>
<td>2.53</td>
<td>2.53</td>
<td>2.53</td>
<td>2.53</td>
</tr>
</tbody>
</table>

Landers scenario, 466,574 elements
Part IV

Current Work – Simulations in Symmetric Mode on Salomon

Rettenberger, Uphoff, Rannabauer;
Project CzeBaCCA: Czech-Bavarian Competence Centre for Supercomputing Applications
Modify Mesh Input and Load Distribution

Scalable Mesh Partitioning and Input Pipeline:

Towards Symmetric Mode:

• Modify weights for METIS graph partitioning: compensate speed differences between host CPU and Xeon Phi
• Work in progress: modify input of meshes
 → Xeon Phi mesh partitions may be read by host and sent via MPI
 → in case of bad I/O bandwidth (library support) of Xeon Phis
Work in Progress: Modify Wave Field Output

Aggregation of MPI ranks to speed up I/O: (Rettenberger [5])

Towards Symmetric Mode:

- Output routines aggregate data from several MPI ranks
 → match I/O block size to achieve substantial speedup
- Only use host MPI ranks for output
 → again in case of bad I/O bandwidth (library support) of Xeon Phis
First Runs on Salomon – Native and Symmetric

Setup: LOH4 benchmark, 250k elements, order 6, no output yet

![Graph showing TFLOP/s (hardware) vs. #nodes for different setups.]

- Ideal
- Host
- MIC
- MIC+MIC
- Host+MIC
- Host+MIC+MIC

M. Bader et al. | Earthquake and tsunami simulation on Xeon Phi | CzeBaCCA Workshop | 29 June 2016
First Runs on Salomon – Native and Symmetric

Setup: LOH4 benchmark, 250k elements, order 6, no output yet
Part V

sam(oa)2
Parallel Adaptive Mesh Refinement using Sierpinski Space Filling Curves

O. Meister, K. Rahnema, M. Bader [4]
Parallel Memory Efficient Adaptive Mesh Refinement on Structured Triangular Meshes with Billions of Grid Cells
sam(oa)²: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)2: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)²: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)2: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)^2: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)2: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)2: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)2: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)2: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)²: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)2: Scalable Dynamic Adaptivity

Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)2: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)2: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)^2: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)²: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)2: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)2: Scalable Dynamic Adapitivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)2: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)²: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
sam(oa)2: Scalable Dynamic Adaptivity
Using Structured Triangular Meshes and Sierpinski Space-Filling Curve
Triangular Meshes Generated by Bisection

“Newest Vertex Bisection” Refinement & Sierpinski Curves:

- fully adaptive grid described by a corresponding refinement tree
- tree and grid cells traversed in Sierpinski order
- minimum memory requirements (1 bit per tree node?!) → triangle strips as data structure
- exploit for cache efficiency and parallelisation
The Stack Principle for Data Exchange on Edges

- to compute **numerical fluxes** in Finite Volume and DG methods
- to synchronise refinement of neighbour cells (**conforming grids**)
Stream- and Stack-based Processing

- drop fixed memory location of variables!
- **persistent** (degrees of freedom) vs. **non-persistent** (residuals, “old” variables) data
- aim: reduce memory footprint and number of traversals
- strongly element-oriented; impedes vectorization over elements
Partitions & Load Balancing: Sierpinski Sections

Use Sierpinski Space-Filling Curve for Partitioning:

- remeshing requires three sections: “add”, “keep”, and “cut”
- generalized towards restructuring of Sierpinski sections: turn M sections into N (balanced) sections
- migrate only sections to simplify data transfer (tolerate sacrifice on load balancing)
- flexible concept of “load”: number of cells, weight per cell, average measured runtime
Load Balancing Using Sierpinski Index Sections

- Adaptive traversal: Refine/coarsen cells
- Load balancing: Estimate new load and exchange sections
- Compute (mark cells for refinement/coarsening)...
- +1 -1 +3 -1 -1 -1 -1 -1 -1 +1 +2 +0
- +1 -1 +3 -1 -1 -1 -1 -1 -1 +1 +2 +0
- Adaptive traversal: Refine/coarsen cells
- Resize sections
Part VI

Dynamically Adaptive Tsunami Simulation – Performance, Scalability, Patches

Oliver Meister, Kaveh Rahnema, Chaulio Ferreira
Tsunami Simulation: Vectorization vs. AMR

<table>
<thead>
<tr>
<th>no vec. 1 core</th>
<th>SSE4 16 cores</th>
<th>AVX 1 core</th>
<th>AVX 16 cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>no vec. 16 cores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSE4 1 core</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mio Element Updates/s per core

<table>
<thead>
<tr>
<th>elements per dim.</th>
<th>400</th>
<th>800</th>
<th>1600</th>
<th>2400</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>no vec. 1 core</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>no vec. 16 cores</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>SSE4 1 core</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>SSE4 16 cores</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>AVX 1 core</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>AVX 16 cores</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Vectorization Imperative on Modern CPU Architectures:

- example above: shallow water simulation on static **Cartesian mesh**
- speed-up due to intrinsics-implementation of augm. Riemann solver
- **sam(oa)**²: mesh adaptivity impedes vectorization over grid cells
- possible remedy: **introduce regularly refined patches**

M. Bader et al. | Earthquake and tsunami simulation on Xeon Phi | CzeBaCCA Workshop | 29 June 2016
Using Patches – First Results on Xeon Phi

SuperMIC: 2 × Xeon Phi 5110P (60 cores, 1.1 GHz) ⇝ Chaulio Ferreira

Simple f-wave Riemann solver:

- solid speedup, but away from optimum (vector width) and not perfectly scaling (single node, shared memory bandwidth)
- need to study influence of memory-bound parts, etc.
Using Patches – First Results on Xeon Phi

SuperMIC: 2 × Xeon Phi 5110P (60 cores, 1.1 GHz) ⇝ Chaulio Ferreira

Vector HLLE solver: (compared against augmented Riemann)

- relatively larger speed-up (more compute-bound than f-wave)
- best time-to-solution for patch-size 8 ⇝ detailed analysis “to do”
- from ∼12 to ∼45 Mio element updates per second per node
Load Balancing for Symmetric Mode

SuperMIC: $2 \times$ Ivy Bridge (8 cores, 2.6 GHz) plus $2 \times$ Xeon Phi 5110P (60 cores, 1.1 GHz)

- guided (2:1:1) clearly superior to homogeneous (1:1:1) load balancing between hosts (1 MPI rank) and Xeon Phi (2 ranks)
- “automatic” (measure runtime) load balancing finds 42:29:29
- suspect heavy losses due to communication
Symmetric Mode – Multiple Nodes

SuperMIC: 2× Ivy Bridge (8 cores, 2.6 GHz) plus 2× Xeon Phi 5110P (60 cores, 1.1 GHz)

- strong scaling currently impeded by slow communication
- withdraw to load balancing every 10 time steps
- will need to test with communication proxy/on Salomon

M. Bader et al. | Earthquake and tsunami simulation on Xeon Phi | CzeBaCCA Workshop | 29 June 2016 37
Part VII

Conclusions and Outlook
Conclusions on SeisSol

Performance Optimisation on Multi&Manycore Platforms:

- high convergence order and high computational intensity of ADER-DG → compute-bound performance on current and imminent CPUs
- code generation to accelerate element kernels
- careful tuning and parallelisation of the entire simulation pipeline (scalable mesh input, output and checkpointing)

Xeon Phi Platforms

- offload scheme scaled to 1.5 million cores (Tianhe-2, Stampede)
- our goal: scale in symmetric mode on heterogeneous supercomputers → current work on SuperMIC and esp. Salomon
- heterogeneity challenges exist in load balancing and scalable I/O
- SeisSol runs on Knights Landing → ISC’16 [7] and KNL-Book [8]
(Preliminary) Conclusions on sam(oa)2

High-Performance Parallel AMR:
• making dynamically adaptive simulation codes achieve high performance is hard work
• space-filling-curve approaches for hybrid parallelism \rightarrow sam(oa)2
• load balancing in each time step is feasible (and hybrid parallelism helps)

Performance Challenges for Modern Heterogeneous Platforms:
• crucial performance question #1: Where can I apply SIMD parallelism for dynamic adaptivity?
• patches offer additional opportunity for vectorization (similar: layered models \rightarrow 2D adaptivity for 3D problems)
• crucial performance question #2: How do I effectively load balance with heterogeneity?
• hoping for automagic (runtime-based) load balancing; \rightarrow prescribed weights currently more successful
Acknowledgements

Special thanks go to . . .

• the entire SeisSol team and all contributors, esp.:
 – Alex Breuer, Sebastian Rettenberger, Carsten Uphoff
 – Alex Heinecke
 – Alice Gabriel, Christian Pelties, Stephanie Wolherr

• the sam(oa)2 team:
 – Oliver Meister, Kaveh Rahnema, Chaulio Ferreira

• all colleagues from the Leibniz Supercomputing Centre

• all colleagues from the IT4Innovations Supercomputing Centre

• for financial and project support:
 – Intel Corporation (IPCC ExScaMIC)
 – Volkswagen Foundation (project ASCETE)
 – BMBF (project CzeBACCA)
Publications

Publications and References

