
1 / 3 Introduction to OpenMP: Exercises and Handout  

{terboven, kapinos}@itc.rwth-aachen.de  Exercises_other.docx 

1 Parallelization	of	an	iterative	Jacobi	Solver	
Go to the jacobi directory. Compile the jacobi.c code via ‘make [debug|release]’ and execute 
the resulting executable via ‘OMP_NUM_THREADS=procs make run’, where procs denotes the 
number of threads to be used. 

Exercise 1 (optional - only if you are already familiar with the tool): Use the VTune Amplifier XE to 
find the compute-intensive program parts of the Jacobi solver. There should be three performance 
hotspots in the program (depending on the input dataset): 

 

Number Line Number Function Name Runtime 
Percentage 

1    
2    
3    

 

Exercise 2: Parallelize the compute-intensive program parts with OpenMP. For a simple start, create 
one parallel region for each performance hotspot. 

Exercise 3: Try to combine parallel regions that are in the same routine into one parallel region. 

Exercise 4: If you are working on a NUMA machine, think about the data distribution of the jacobi code. 
Change the data initialization for a better data distribution if needed. If you wish, you can also 
parallelize the error check as well. 

 

2 Reasoning	about	Work-Distribution	(sin-cos)	
Go to the for directory. Compile the for code via ‘make [debug|release]’ and execute the 
resulting executable via ‘OMP_NUM_THREADS=procs make run’, where procs denotes the number 
of threads to be used. 

Exercise 1: Examine the code and think about where to put the parallelization directive(s). 

Exercise 2: Measure the speedup and the efficiency of the parallelized code. How good does the code 
scale and which scaling did you expect? 

# Threads Runtime [sec] Speedup Efficiency 
1    
    
    
    

Is this what you expected? 



2 / 3 Introduction to OpenMP: Exercises and Handout  

{terboven, kapinos}@itc.rwth-aachen.de  Exercises_other.docx 

3 Quicksort	
Quicksort is a recursive algorithm which, in this case, is used to sort an array of random integer 
numbers. How it works is described in the following steps. 

A pivot element is chosen. The value of this element is the point where the array is split in this 
recursion level. 

 

All values smaller than the pivot element are moved to the front of the array, all elements larger than 
the pivot element to the end of the array. The pivot element is between both parts. Note, depending 
on the pivot element the partitions may differ in size. 

 

Both partitions are sorted separately by recursive calls to quicksort. 

 

The recursion ends, when the array reaches a size of 1, because one element is always sorted. 

Go to the quicksort directory. Compile the Quicksort code via ‘make [debug|release]’ and 
execute the resulting executable via ‘OMP_NUM_THREADS=procs make run’, where procs denotes 
the number of threads to be used. 

Exercise 1: The partitions created in step 3 can be sorted independent from each other, so this could 
be done in parallel. Use OpenMP Tasks to parallelize the quicksort program. 

Exercise 2: Creating tasks for very small partitions is inefficient. Implement a cut-off to create tasks 
only if enough work is left. E.g. when more than 10k numbers have to be sorted, a task can be created, 
for smaller arrays no task is created.  

Hint: You can add if clauses to the task pragmas. 

Exercise 3: The if clause needs to be evaluated every time the function is called, although the array 
size does not exceed 10k elements on a lower level. Implement a serial_quicksort function and call this 
function when the array gets too small. This can help to avoid the overhead of the if clause. 

  



3 / 3 Introduction to OpenMP: Exercises and Handout  

{terboven, kapinos}@itc.rwth-aachen.de  Exercises_other.docx 

8 Mandelbrot	
The Mandelbrot set is a set of complex numbers that has a highly convoluted fractal boundary when 
plotted. The given code computes and plots the Mandelbrot set. The generated plot looks like this: 

 

Go to the mandelbrot directory. Compile the mandelbrot code via ‘make [debug|release]’ and 
execute the resulting executable via ‘OMP_NUM_THREADS=procs make run’, where procs denotes 
the number of threads to be used. 

Exercise 1: Execute the code with one thread and with multiple threads and compare the resulting 
pictures. Do they look as the picture above? 

Exercise 2: One of the pictures is incorrect. Do you have an idea what is going wrong? Do you know a 
tool which can help you to find the error? Try to detect and fix the error in the code. 


