
OpenMP Programming
Workshop @LRZ

The Common Core and Beyond

Manuel Arenaz | February 11-13, 2020

©Appentra Solutions S.L.

Agenda

8:30 - 9:00 Setup and welcome participants

9:00 - 9:15 Overview

9:15 - 10:30 The OpenMP Common Core
Decomposing code into patterns for parallelization
Using Parallelware Trainer: A walk-through with PI example

10:30 - 11:00 Coffee

11:00 - 12:40 Practicals: Examples codes PI, MANDELBROT, HEAT and LULESHmk

 Worksheet: Parallelizing PI and LULESHmk with OpenMP

12:40 - 13:00 Close

2Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Why use patterns to parallelize code?

● The OpenACC Application Programming Interface. Version 2.7 (November 2018) 🔗
○ “does not describe automatic detection of parallel regions or automatic offloading of regions of code

to an accelerator by a compiler or other tool.”
○ “if one thread updates a memory location and another reads the same location, or two threads store a

value to the same location, the hardware may not guarantee the same result for each execution.”

○ “it is (...) possible to write a compute region that produces inconsistent numerical results.”

○ “Programmers need to be very careful that the program uses appropriate synchronization to ensure

that an assignment or modification by a thread on any device to data in shared memory is complete and

available before that data is used by another thread on the same or another device.”

● Programmers are responsible for making good use of OpenACC

● Decomposition of codes into patterns
○ Helps to make good use of OpenACC and OpenMP

○ Speeds up the parallelization process

○ Is more likely to result in good performance
3Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf

Accelerating code with OpenMP/OpenACC

Compare serial and
parallel performance

Optimize parallel
code

Add directives

Analyze for
parallelism

Profile & identify
hotspots

Analyze for
parallelism

Implement parallel
code

Compare serial and
parallel performance

Optimize parallel
code

Profile & identify
hotspots

4

Identify hotspots

Analyze loops
○ Understand code components
○ What patterns are present?

Implement parallelism by adding directives

Benchmark performance

Optimize
○ Improve data locality
○ Minimize data transfers

Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Decomposing your code into components

How does it fit into the classical
parallelization workflow?

High-productivity approach
independent of OpenMP/OpenACC

Parallel pattern

Parallel Code

Pattern

Components

Serial Code

Components

Patterns

Parallel patterns

Parallel code

Serial code

Compare serial and
parallel performance

Optimize parallel code

Add directives

Analyze for parallelism

Profile & identify
hotspots

Analyze for parallelism

Implement parallel
code

Compare serial and
parallel performance

Optimize parallel code

Profile & identify
hotspots

5Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Decomposing your code into components

Scientific components are

typically available through

highly-optimized libraries, but

code components must be

addressed by the programmer.

6

Scientific components
(eg. MATMUL, FFT)

Code components
or code patterns
(eg. REDUCTION)

Parallel patterns

Parallel Code

Patterns

Components

Serial Code

Components

Patterns

Parallel patterns

Parallel Code

Serial Code

Compare serial and
parallel performance

Optimize parallel
code

Add directives

Analyze for
parallelism

Profile & identify
hotspots

Analyze for
parallelism

Implement parallel
code

Compare serial and
parallel performance

Optimize parallel
code

Profile & identify
hotspots

Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Decomposing your code into components

Step 1: Use your profiling to

○ Identify calls, routines, functions or loops that consume most of the runtime

Step 2: For each routine contained in an external library

○ Scientific components: kernels available as external libraries, including but not limited to dense/sparse linear

algebra and spectral methods.

○ Consider using a highly optimized version of the routine available in the target platform

Step 3: For each routine coded by the programmer that matches a routine contained in external library

○ Consider replacing the corresponding routines with highly-optimized version in your platform

Step 4: For the remaining user-defined routines

○ Understand the code patterns you have in your code and use them as a guide for parallelization

7Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Types of code patterns

Parallel patterns

Parallel Code

Pattern

Components

Serial Code

Components

Patterns

Parallel patterns

Parallel Code

Serial Code

Compare serial and
parallel performance

Optimize parallel
code

Add directives

Analyze for
parallelism

Profile & identify
hotspots

Analyze for
parallelism

Implement parallel
code

Compare serial and
parallel performance

Optimize parallel
code

Profile & identify
hotspots

8

Computation patterns

Memory patterns

Flow patterns

Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Types of
code
patterns

Pattern

Components

Serial code

Pattern

9

Parallel code

Parallel pattern

Computation patterns

Memory patterns

Flow patterns

Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Computation
Patterns

parallel forall

parallel sparse
reduction

for (j=0; j<n; j++) {
 A[j] = B[j];
}

for (j=0; j<n; j++) {
 A[C[j]] += B[j];
}

parallel scalar
reduction

for (j=0; j<n; j++) {
 A += B[j];
}

parallel sparse
forall

for (j=0; j<n; j++) {
 A[C[j]] = B[j];
}

10Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Why using computation patterns?

1: Computation patterns enable to ensure correct variable management in the parallel code
○ Each pattern has one output variable that is computed in the code.

○ The pattern dictates the correct data scoping of the output variable (e.g. shared, private, reduction).

2: Computation patterns provide algorithmic rules to re-code sequential code into a
parallel-equivalent code

○ Patterns provide information about the type of computations that are associated with a variable of

the code. And this type of computations dictates what codes can be parallelized (e.g. reduction).

3: Computation patterns enable to code parallel versions for several standards and platforms
○ Each pattern provides code rewriting rules for OpenMP/OpenACC and CPU/GPU.

11Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Forall

Understanding the sequential code

Identifying opportunities for parallelization

parallel forall

Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

for (j=0; j<n; j++) {
 A[j] = B[j];
}

● A loop that updates the elements of an array.
● Each iteration updates a different element of

the array.
● The result of computing this pattern is an

array that is the “output variable”.

Parallel Loop Forall

12

Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Scalar reduction

Understanding the sequential code

Identifying opportunities for parallelization

parallel forall

● Combine multiple values into one single
element (the scalar reduction variable)
by applying an associative, commutative
operator.

● Most frequently in a loop
● The result of computing this pattern is a

scalar that is the “reduction variable”.

parallel scalar
reduction

for (j=0; j<n; j++) {
 A += B[j];
}

● Parallel Loop w/ Built-in reduction
● Parallel Loop w/ Atomic
● Parallel Loop w/ Explicit Privatization

Scalar
reduction

13

Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Sparse reduction

Understanding the sequential code

Identifying opportunities for parallelization

parallel forall

● A sparse or irregular reduction combines a set of
values from a subset of the elements of a vector
or array with an associative, commutative
operator.

● The set of array elements used cannot be
determined until runtime due to the use of
subscript array to provide these values.

● The result of computing this pattern is an array
that is the “reduction variable”.

parallel sparse
reduction

for (j=0; j<n; j++) {
 A[C[j]] += B[j];
}

Parallel Loop w/ Built-in reduction
Parallel Loop w/ Atomic
Parallel Loop w/ Explicit Privatization

Sparse
reduction

14

Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Sparse forall

Understanding the sequential code

Identifying opportunities for parallelization

parallel forall
parallel sparse
forall

for (j=0; j<n; j++) {
 A[C[j]] = B[j];
}

Parallel Loop w/ Explicit PrivatizationSparse
forall

● A loop that updates the elements of an
array.

● The set of array elements used cannot
be determined until runtime due to the
use of subscript array to provide these
values.

● The result of computing this pattern is
an array that is the “output variable”.

15

Parallelization strategies

16

Parallel Loop w/ Atomic
Parallel Loop w/ Explicit Privatization

● Parallel Loop w/ Built-in reduction
● Parallel Loop w/ Atomic
● Parallel Loop w/ Explicit Privatization

Patterns and parallelization strategies

Parallelization
Strategies Sparse

reduction

Parallel Loop

Scalar
reduction

Forall

 Parallel Loop w/ Explicit PrivatizationSparse
forall

17

Mapping parallelization strategies to patterns
Parallelization Strategy

Parallel Loop
Parallel Loop w/
Built-in reduction

Parallel Loop w/
Atomic

Parallel Loop w/ Explicit
Privatization

Multithreading on CPU

Parallel
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall
18

“Parallel Loop”
Parallelization Strategy

Parallel Loop
Parallel Loop w/
Built-in reduction

Parallel Loop w/
Atomic

Parallel Loop w/ Explicit
Privatization

Multithreading on CPU

Parallel
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall
19

“Parallel Loop”: Implementation in OpenMP/OpenACC

#pragma omp parallel default(none) shared(D, X, Y, a, n)
{
#pragma omp for schedule(auto)
for (int i = 0; i < n; i++) {
 D[i] = a * X[i] + Y[i];
}
} // end parallel

20

#pragma acc parallel
{
#pragma acc loop
for (int i = 0; i < n; i++) {
 D[i] = a * X[i] + Y[i];
}
} // end parallel

Definition of the parallel
region
Identifies the code section that
can be executed concurrently.

Shared variables
Read-only variables that can be
accessed by all threads.

Work sharing
The loop directive allows the
compiler to map the
computational workload to
threads.

20Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

“Parallel Loop w/ Built-in Reduction”
Parallelization Strategy

Parallel Loop
Parallel Loop w/
Built-in reduction

Parallel Loop w/
Atomic

Parallel Loop w/ Explicit
Privatization

Multithreading on CPU

Parallel
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall
21

“Parallel Loop w/ Built-in Reduction”: Implementation

22

double sum = 0.0;

#pragma omp parallel default(none) shared(N, sum)
{
#pragma omp for reduction(+: sum) schedule(auto)
for (int i = 0; i < N; i++) {
 double x = (i + 0.5) / N;
 sum += sqrt(1 - x * x);
}
} // end parallel

double sum = 0.0;

#pragma acc parallel
{
#pragma acc loop reduction(+: sum)
for (int i = 0; i < N; i++) {
 double x = (i + 0.5) / N;
 sum += sqrt(1 - x * x);
}
} // end parallel

Definition of the parallel region
Identifies the code section that can be
executed concurrently.

Shared variables
Read-only variables that can be accessed
by all threads.

Work sharing
The loop/for directive allows the
compiler to map the computational
workload to threads.

Reduction
Identifies the loop as a reduction, and
identifies the subject of the reduction (i.e.
sum) and the reduction operator (i.e. ‘+’)

22

“Parallel Loop w/ Atomic”
Parallelization Strategy

Parallel Loop
Parallel Loop w/
Built-in reduction

Parallel Loop w/
Atomic

Parallel Loop w/ Explicit
Privatization

Multithreading on CPU

Parallel
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall
23

“Parallel Loop w/ Atomic”: Implementation

Shared variable, S, is the ‘reduction’ variable. No private
data.

Access to the variable S, is controlled by the ‘atomic’
directive: i.e. only one thread can read/write the variable
at any one time.

In each atomic access of S, the thread adds part of the
contribution to the total reduction value. In this instance,
the reduction operation is an addition.

Private data

Thread 0

Private data

Thread 1

Private data

Thread 2

0 S

#atomic
S+= …

#atomic
S+= …

#atomic
S+= …

SHARED MEMORY

#atomic
S+= …
...

#atomic
S+= …
...

#atomic
S+= …
...

#atomic
S+= …

#atomic
S+= …

#atomic
S+= …

24

“Parallel Loop w/ Atomic”: Implementation

25

Definition of the parallel
region
Identifies the code section
that can be executed
concurrently.

Shared variables
Read-only variables that can be
accessed by all threads.

Work sharing
The loop directive allows the
compiler to map the
computational workload to
threads.

Atomic update
Only one thread can read/write
the variable at any one time.

double sum = 0.0;

#pragma acc parallel
{
#pragma acc loop
for (int i = 0; i < N; i++) {
 double x = (i + 0.5) / N;
 #pragma acc atomic update
 sum += sqrt(1 - x * x);
}
} // end parallel

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
{
#pragma omp for schedule(auto)
for (int i = 0; i < N; i++) {
 double x = (i + 0.5) / N;
 #pragma omp atomic update
 sum += sqrt(1 - x * x);
}
} // end parallel

25

“Parallel Loop w/ Explicit Privatization”
Parallelization Strategy

Parallel Loop
Parallel Loop w/
Built-in reduction

Parallel Loop w/
Atomic

Parallel Loop w/ Explicit
Privatization

Multithreading on CPU

Parallel
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall
26

“Parallel Loop w/ Explicit Privatization”: Implementation

Create private copies S0…Sp-1 of the shared variable S.
Initialize the private variables to 0.

Each thread computes a partial sum using its private copy
only. No synchronization with other threads.

Each thread adds its partial sum to the global sum. Using
atomic guarantees exclusive access to the reduction
variable.

Private data

Thread 0

Private data

Thread 1

Private data

Thread 2

SHARED MEMORY

0

S00

S

S10 S20

S0+= … S1+= … S2+= …

#atomic
S += S0

#atomic
S += S1

#atomic
S += S2

S1+= …S0+= … S2+= …

S0+= …
...

S1+= …
...

S2+= …
...

27

Use atomic to contribute to global value
To complete the calculation each thread adds its
contribution to the global shared using atomic.

28

Create private, local copies
Create thread-local copies of the reduction variable
and initialize the local copies to 0.

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
{
// preamble
double sum_private = 0;
// end preamble
#pragma omp for schedule(auto)
for (int i = 0; i < N; i++) {
 double x = (i + 0.5) / N;
 sum_private += sqrt(1 - x * x);
}
// postamble
#pragma omp atomic update
sum += sum_private;
// end postamble
} // end parallel

#pragma omp parallel default(none) shared(col_ind, n, row_ptr, val, x, y)
{
// preamble
unsigned int y_length = 0 + n;
double *y_private = (double *) malloc(sizeof(double) * y_length);
for (int i = 0; i < y_length; ++i) {
 y_private[i] = 0;
}
// end preamble
#pragma omp for schedule(auto)
for (int i = 0; i < n; i++) {
 for (int k = row_ptr[i]; k < row_ptr[i + 1]; k++) {
 y_private[col_ind[k]] = y_private[col_ind[k]] + x[i] * val[k];
 }
}
// postamble
#pragma omp critical
for(int i = 0; i < y_length; ++i) {
 y[i] += y_private[i];
}
free(y_private);
// end postamble
} // end parallelExplicit privatization

Each thread performs a thread-local
computation on the private copy. 28

“Parallel Loop w/ Explicit Privatization”: Implementation

Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Mapping strategies to patterns for Tasking
Parallelization Strategy

Parallel Loop
Parallel Loop w/
Built-in reduction

Parallel Loop w/
Atomic

Parallel Loop w/ Explicit
Privatization

Fine-grain tasking on CPU (OpenMP 3.0 task/taskwait; OpenMP 4.5 taskloop -implementation dependent-)

Parallel
Pattern

Forall ✓

Scalar Reduction upcoming ✓ upcoming

Sparse Reduction ✓ upcoming

Sparse forall upcoming

Coarse-grain tasking on CPU (OpenMP 3.0: task/taskwait + loop stripmining; OpenMP 4.5 taskloop grainsize/numtasks)

Parallel
Pattern

Forall upcoming

Scalar Reduction upcoming upcoming upcoming

Sparse Reduction upcoming upcoming

Sparse forall
29

OpenMP 3.0: task/taskwait

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
#pragma omp master
{
for (int i = 0; i < N; i++) {
#pragma omp task shared(sum)
 {
 double x = (i + 0.5) / N;
 #pragma omp atomic update
 sum += sqrt(1 - x * x);
 }
}
#pragma omp taskwait
} // end parallel master

“Parallel Loop w/ Atomic”: Impl. w/ Tasking

OpenMP 4.5: taskloop

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
#pragma omp single
{
 #pragma omp taskloop
 for (int i = 0; i < N; i++) {
 double x = (i + 0.5) / N;
 #pragma omp atomic update
 sum += sqrt(1 - x * x);
 }
} // end parallel

30Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

Parallelization strategies
Pros & Cons

31

Parallelization Strategy

Parallel Loop
Parallel Loop w/
Built-in reduction

Parallel Loop w/
Atomic

Parallel Loop w/ Explicit
Privatization

Multithreading on CPU

Parallel
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall
32

Parallelization strategies for computation patterns

Parallelization Strategy

Parallel Loop
Parallel Loop w/
Built-in reduction

Parallel Loop w/
Atomic

Parallel Loop w/ Explicit
Privatization

Fine-grain tasking on CPU (OpenMP 3.5 task/taskwait; OpenMP 4.5 taskloop -implementation dependent-)

Parallel
Pattern

Forall ✓

Scalar Reduction upcoming ✓ upcoming

Sparse Reduction ✓ upcoming

Sparse forall upcoming

Coarse-grain tasking on CPU (OpenMP 3.5: task/taskwait + loop stripmining; OpenMP 4.5 taskloop grainsize/numtasks)

Parallel
Pattern

Forall upcoming

Scalar Reduction upcoming upcoming upcoming

Sparse Reduction upcoming upcoming

Sparse forall
33

Parallelization strategies for computation patterns

Strategy Pros Cons

Parallel Loop - Easy to implement
- No synchronization overhead within the loop

- Limited applicability: only works when
each loop iteration is entirely
independent

Parallel Loop
w/ Built-in
Reduction

- Scales with threads/core counts, not the problem size
- Offers speedup even for codes with low arithmetic intensity
- Complexity handled by the compiler
- Potential for highly optimized implementation
(compiler/platform dependent)

- Can only be used for supported
reduction operators

Parallel Loop
w/ Atomic
Protection

- Easy to understand
- Provides speedup for codes with high arithmetic intensity
- Solution for reduction patterns where operator is not
supported by build-in reduction clause

- Synchronization overhead scales with
the number of threads
- Poor performance for codes with low
arithmetic intensity

Parallel Loop
w/ Explicit
Privatization

- Possible to achieve speedup similar to Built-in Reductions
- Programmer has full control of the parallel implementation

- Significant programmer effort
- Not suitable for GPUs due to memory
requirements

34Manuel Arenaz | February 11-13, 2020 | ©Appentra Solutions S.L.

