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Agenda

8:30 - 9:00  Setup and welcome participants

9:00 - 9:15  Overview

9:15 - 10:30 The OpenMP Common Core
Decomposing code into patterns for parallelization
Using Parallelware Trainer: A walk-through with PI example

10:30 - 11:00  Coffee

11:00 - 12:40  Practicals: Examples codes PI, MANDELBROT, HEAT and LULESHmk

 Worksheet: Parallelizing PI and LULESHmk with OpenMP

12:40 - 13:00  Close
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Why use patterns to parallelize code?

● The OpenACC Application Programming Interface. Version 2.7 (November 2018) 🔗
○ “does not describe automatic detection of parallel regions or automatic offloading of regions of code 

to an accelerator by a compiler or other tool.”
○ “if one thread updates a memory location and another reads the same location, or two threads store a 

value to the same location, the hardware may not guarantee the same result for each execution.”

○ “it is (...) possible to write a compute region that produces inconsistent numerical results.”

○ “Programmers need to be very careful that the program uses appropriate synchronization to ensure 

that an assignment or modification by a thread on any device to data in shared memory is complete and 

available before that data is used by another thread on the same or another device.”

● Programmers are responsible for making good use of OpenACC

● Decomposition of codes into patterns
○ Helps to make good use of OpenACC and OpenMP

○ Speeds up the parallelization process

○ Is more likely to result in good performance
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https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf


Accelerating code with OpenMP/OpenACC

Compare serial and 
parallel performance

Optimize parallel 
code

Add directives

Analyze for 
parallelism

Profile & identify 
hotspots

Analyze for 
parallelism

Implement parallel 
code

Compare serial and 
parallel performance

Optimize parallel 
code

Profile & identify 
hotspots
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Identify hotspots

Analyze loops
○ Understand code components
○ What patterns are present?

Implement parallelism by adding directives

Benchmark performance

Optimize
○ Improve data locality
○ Minimize data transfers
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Decomposing your code into components

How does it fit into the classical 
parallelization workflow?

High-productivity approach 
independent of OpenMP/OpenACC

Parallel pattern

Parallel Code 

Pattern

Components

Serial Code

Components

Patterns

Parallel patterns

Parallel code

Serial code

Compare serial and 
parallel performance

Optimize parallel code

Add directives

Analyze for parallelism

Profile & identify 
hotspots

Analyze for parallelism

Implement parallel 
code

Compare serial and 
parallel performance

Optimize parallel code

Profile & identify 
hotspots
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Decomposing your code into components

Scientific components are 

typically available through 

highly-optimized libraries, but 

code components must be 

addressed by the programmer.
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Scientific components
(eg. MATMUL, FFT)

Code components 
or code patterns
(eg. REDUCTION)

Parallel patterns

Parallel Code 

Patterns

Components

Serial Code

Components

Patterns

Parallel patterns

Parallel Code

Serial Code

Compare serial and 
parallel performance

Optimize parallel 
code

Add directives

Analyze for 
parallelism

Profile & identify 
hotspots

Analyze for 
parallelism

Implement parallel 
code

Compare serial and 
parallel performance

Optimize parallel 
code

Profile & identify 
hotspots

Manuel Arenaz  |  February 11-13, 2020   |  ©Appentra Solutions S.L.



Decomposing your code into components

Step 1: Use your profiling to

○ Identify calls, routines, functions or loops that consume most of the runtime

Step 2: For each routine contained in an external library

○ Scientific components: kernels available as external libraries, including but not limited to dense/sparse linear 

algebra and spectral methods.

○ Consider using a highly optimized version of the routine available in the target platform

Step 3: For each routine coded by the programmer that matches a routine contained in external library

○ Consider replacing the corresponding routines with highly-optimized version in your platform

Step 4: For the remaining user-defined routines

○ Understand the code patterns you have in your code and use them as a guide for parallelization 
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Types of code patterns

Parallel patterns

Parallel Code 

Pattern

Components

Serial Code

Components

Patterns

Parallel patterns

Parallel Code

Serial Code

Compare serial and 
parallel performance

Optimize parallel 
code
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Profile & identify 
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Implement parallel 
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Computation patterns

Memory patterns

Flow patterns
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Types of 
code 
patterns

Pattern

Components

Serial code

Pattern
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Parallel code

Parallel pattern

Computation patterns

Memory patterns

Flow patterns
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Computation
Patterns

parallel forall

parallel sparse 
reduction

for (j=0; j<n; j++ ) {
   A[j] = B[j];
}

for (j=0; j<n; j++ ) {
   A[C[j]] += B[j];
}

parallel scalar 
reduction

for (j=0; j<n; j++ ) {
   A += B[j];
}

parallel sparse 
forall

for (j=0; j<n; j++ ) {
   A[C[j]] = B[j];
}
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Why using computation patterns?

1: Computation patterns enable to ensure correct variable management in the parallel code
○ Each pattern has one output variable that is computed in the code.

○ The pattern dictates the correct data scoping of the output variable (e.g. shared, private, reduction).

2: Computation patterns provide algorithmic rules to re-code sequential code into a         
parallel-equivalent code

○ Patterns provide information about the type of computations that are associated with a variable of 

the code. And this type of computations dictates what codes can be parallelized (e.g. reduction).

3: Computation patterns enable to code parallel versions for several standards and platforms
○ Each pattern provides code rewriting rules for OpenMP/OpenACC and CPU/GPU.
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Forall

Understanding the sequential code

Identifying opportunities for parallelization

parallel forall
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for (j=0; j<n; j++ ) {
   A[j] = B[j];
}

● A loop that updates the elements of an array. 
● Each iteration updates a different element of 

the array.
● The result of computing this pattern is an 

array that is the “output variable”.

Parallel Loop Forall

12
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Scalar reduction

Understanding the sequential code

Identifying opportunities for parallelization

parallel forall

● Combine multiple values into one single 
element (the scalar reduction variable) 
by applying an associative, commutative 
operator. 

● Most frequently in a loop
● The result of computing this pattern is a 

scalar that is the “reduction variable”.

parallel scalar 
reduction

for (j=0; j<n; j++ ) {
   A += B[j];
}

● Parallel Loop w/ Built-in reduction
● Parallel Loop w/ Atomic
● Parallel Loop w/ Explicit Privatization

Scalar 
reduction

13



Manuel Arenaz  |  February 11-13, 2020   |  ©Appentra Solutions S.L.

Sparse reduction

Understanding the sequential code

Identifying opportunities for parallelization

parallel forall

● A sparse or irregular reduction combines a set of 
values from a subset of the elements of a vector 
or array with an associative, commutative 
operator. 

● The set of array elements used cannot be 
determined until runtime due to the use of 
subscript array to provide these values. 

● The result of computing this pattern is an array 
that is the “reduction variable”.

parallel sparse 
reduction

for (j=0; j<n; j++ ) {
   A[C[j]] += B[j];
}

Parallel Loop w/ Built-in reduction
Parallel Loop w/ Atomic
Parallel Loop w/ Explicit Privatization

Sparse 
reduction
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Sparse forall

Understanding the sequential code

Identifying opportunities for parallelization

parallel forall
parallel sparse 
forall

for (j=0; j<n; j++ ) {
   A[C[j]] = B[j];
}

Parallel Loop w/ Explicit PrivatizationSparse 
forall

● A loop that updates the elements of an 
array. 

● The set of array elements used cannot 
be determined until runtime due to the 
use of subscript array to provide these 
values. 

● The result of computing this pattern is 
an array that is the “output variable”.
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Parallelization strategies
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Parallel Loop w/ Atomic
Parallel Loop w/ Explicit Privatization

● Parallel Loop w/ Built-in reduction
● Parallel Loop w/ Atomic
● Parallel Loop w/ Explicit Privatization

Patterns and parallelization strategies

Parallelization
Strategies Sparse 

reduction

Parallel Loop 

Scalar 
reduction

Forall

                Parallel Loop w/ Explicit PrivatizationSparse 
forall
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Mapping parallelization strategies to patterns
Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Multithreading on CPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall
18



“Parallel Loop”
Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Multithreading on CPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall
19



“Parallel Loop”: Implementation in OpenMP/OpenACC

#pragma omp parallel default(none) shared(D, X, Y, a, n)
{
#pragma omp for schedule(auto)
for (int i = 0; i < n; i++) {
    D[i] = a * X[i] + Y[i];
}
} // end parallel

20

#pragma acc parallel
{
#pragma acc loop
for (int i = 0; i < n; i++) {
    D[i] = a * X[i] + Y[i];
}
} // end parallel

Definition of the parallel 
region
Identifies the code section that 
can be executed concurrently.

Shared variables
Read-only variables that can be 
accessed by all threads.

Work sharing
The loop directive allows the 
compiler to map the 
computational workload to 
threads.
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“Parallel Loop w/ Built-in Reduction”
Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Multithreading on CPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall
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“Parallel Loop w/ Built-in Reduction”: Implementation

22

double sum = 0.0;

#pragma omp parallel default(none) shared(N, sum)
{
#pragma omp for reduction(+: sum) schedule(auto)
for (int i = 0; i < N; i++) {
    double x = (i + 0.5) / N;
    sum += sqrt(1 - x * x);
}
} // end parallel

double sum = 0.0;

#pragma acc parallel
{
#pragma acc loop reduction(+: sum)
for (int i = 0; i < N; i++) {
    double x = (i + 0.5) / N;
    sum += sqrt(1 - x * x);
}
} // end parallel

Definition of the parallel region
Identifies the code section that can be 
executed concurrently.

Shared variables
Read-only variables that can be accessed 
by all threads.

Work sharing
The loop/for directive allows the 
compiler to map the computational 
workload to threads.

Reduction
Identifies the loop as a reduction, and 
identifies the subject of the reduction (i.e. 
sum) and the reduction operator (i.e. ‘+’)
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“Parallel Loop w/ Atomic”
Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Multithreading on CPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall
23



“Parallel Loop w/ Atomic”: Implementation

Shared variable, S, is the ‘reduction’ variable. No private 
data.

Access to the variable S, is controlled by the ‘atomic’ 
directive: i.e. only one thread can read/write the variable 
at any one time. 

In each atomic access of S, the thread adds part of the 
contribution to the total reduction value. In this instance, 
the reduction operation is an addition.

Private data

Thread 0

Private data

Thread 1

Private data

Thread 2

0 S

#atomic
S+= …

#atomic
S+= …

#atomic
S+= …

SHARED MEMORY

#atomic
S+= …
...

#atomic
S+= …
...

#atomic
S+= …
...

#atomic
S+= …

#atomic
S+= …

#atomic
S+= …
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“Parallel Loop w/ Atomic”: Implementation

25

Definition of the parallel 
region 
Identifies the code section 
that can be executed 
concurrently.

Shared variables
Read-only variables that can be 
accessed by all threads.

Work sharing
The loop directive allows the 
compiler to map the 
computational workload to 
threads.

Atomic update
Only one thread can read/write 
the variable at any one time. 

double sum = 0.0;

#pragma acc parallel
{
#pragma acc loop
for (int i = 0; i < N; i++) {
    double x = (i + 0.5) / N;
    #pragma acc atomic update
    sum += sqrt(1 - x * x);
}
} // end parallel

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
{
#pragma omp for schedule(auto)
for (int i = 0; i < N; i++) {
    double x = (i + 0.5) / N;
    #pragma omp atomic update
    sum += sqrt(1 - x * x);
}
} // end parallel

25



“Parallel Loop w/ Explicit Privatization”
Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Multithreading on CPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall
26



“Parallel Loop w/ Explicit Privatization”: Implementation

Create private copies S0…Sp-1 of the shared variable S. 
Initialize the private variables to 0.

Each thread computes a partial sum using its private copy 
only. No synchronization with other threads.

Each thread adds its partial sum to the global sum. Using 
atomic guarantees exclusive access to the reduction 
variable.

Private data

Thread 0

Private data

Thread 1

Private data

Thread 2

SHARED MEMORY

0

S00

S

S10 S20

S0+= … S1+= … S2+= …

#atomic
S += S0

#atomic
S += S1

#atomic
S += S2

S1+= …S0+= … S2+= …

S0+= …
...

S1+= …
...

S2+= …
...
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Use atomic to contribute to global value
To complete the calculation each thread adds its 
contribution to the global shared using atomic.

28

Create private, local copies
Create thread-local copies of the reduction variable 
and initialize the local copies  to 0.

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
{
// preamble
double sum_private = 0;
// end preamble
#pragma omp for schedule(auto)
for (int i = 0; i < N; i++) {
    double x = (i + 0.5) / N;
    sum_private += sqrt(1 - x * x);
}
// postamble
#pragma omp atomic update
sum += sum_private;
// end postamble
} // end parallel

#pragma omp parallel default(none) shared(col_ind, n, row_ptr, val, x, y)
{
// preamble
unsigned int y_length = 0 + n;
double *y_private = (double *) malloc(sizeof(double) * y_length);
for (int i = 0; i < y_length; ++i) {
  y_private[i] = 0;
}
// end preamble
#pragma omp for schedule(auto)
for (int i = 0; i < n; i++) {
    for (int k = row_ptr[i]; k < row_ptr[i + 1]; k++) {
        y_private[col_ind[k]] = y_private[col_ind[k]] + x[i] * val[k];
    }
}
// postamble
#pragma omp critical
for(int i = 0; i < y_length; ++i) {
  y[i] += y_private[i];
}
free(y_private);
// end postamble
} // end parallelExplicit privatization

Each thread performs a thread-local 
computation on the private copy. 28

“Parallel Loop w/ Explicit Privatization”: Implementation
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Mapping strategies to patterns for Tasking
Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Fine-grain tasking on CPU (OpenMP 3.0 task/taskwait; OpenMP 4.5 taskloop -implementation dependent-)

Parallel 
Pattern

Forall ✓

Scalar Reduction upcoming ✓ upcoming

Sparse Reduction ✓ upcoming

Sparse forall upcoming

Coarse-grain tasking on CPU (OpenMP 3.0: task/taskwait + loop stripmining; OpenMP 4.5 taskloop grainsize/numtasks)

Parallel 
Pattern

Forall upcoming

Scalar Reduction upcoming upcoming upcoming

Sparse Reduction upcoming upcoming

Sparse forall
29



OpenMP 3.0: task/taskwait

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
#pragma omp master
{
for (int i = 0; i < N; i++) {
#pragma omp task shared(sum)
   {
    double x = (i + 0.5) / N;
    #pragma omp atomic update
    sum += sqrt(1 - x * x);
   }
}
#pragma omp taskwait
} // end parallel master

“Parallel Loop w/ Atomic”: Impl. w/ Tasking

OpenMP 4.5: taskloop

double sum = 0.0;
#pragma omp parallel default(none) shared(N, sum)
#pragma omp single
{
    #pragma omp taskloop
    for (int i = 0; i < N; i++) {
        double x = (i + 0.5) / N;
        #pragma omp atomic update
        sum += sqrt(1 - x * x);
    }
} // end parallel
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Parallelization strategies
Pros & Cons
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Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Multithreading on CPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓ ✓

Sparse Reduction ✓ ✓

Sparse forall upcoming

Offloading to GPU

Parallel 
Pattern

Forall ✓

Scalar Reduction ✓ ✓

Sparse Reduction ✓

Sparse forall
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Parallelization strategies for computation patterns



Parallelization Strategy

Parallel Loop
Parallel Loop w/ 
Built-in reduction

Parallel Loop w/ 
Atomic

Parallel Loop w/ Explicit 
Privatization

Fine-grain tasking on CPU (OpenMP 3.5 task/taskwait; OpenMP 4.5 taskloop -implementation dependent-)

Parallel 
Pattern

Forall ✓

Scalar Reduction upcoming ✓ upcoming

Sparse Reduction ✓ upcoming

Sparse forall upcoming

Coarse-grain tasking on CPU (OpenMP 3.5: task/taskwait + loop stripmining; OpenMP 4.5 taskloop grainsize/numtasks)

Parallel 
Pattern

Forall upcoming

Scalar Reduction upcoming upcoming upcoming

Sparse Reduction upcoming upcoming

Sparse forall
33

Parallelization strategies for computation patterns



Strategy Pros Cons

Parallel Loop - Easy to implement
- No synchronization overhead within the loop

- Limited applicability: only works when 
each loop iteration is entirely 
independent

Parallel Loop 
w/ Built-in 
Reduction

- Scales with threads/core counts, not the problem size
- Offers speedup even for codes with low arithmetic intensity
- Complexity handled by the compiler
- Potential for highly optimized implementation 
(compiler/platform dependent)

- Can only be used for supported 
reduction operators 

Parallel Loop 
w/ Atomic 
Protection

- Easy to understand
- Provides speedup for codes with high arithmetic intensity
- Solution for reduction patterns where operator is not 
supported by build-in reduction clause

- Synchronization overhead scales with 
the number of threads
- Poor performance for codes with low 
arithmetic intensity

Parallel Loop 
w/ Explicit 
Privatization

- Possible to achieve speedup similar to Built-in Reductions
- Programmer has full control of the parallel implementation

- Significant programmer effort
- Not suitable for GPUs due to memory 
requirements
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