Using R at LRZ

09/10/2019 | J. Albert-von der Gönna
Course Information

• The aim of this course is to demonstrate the different ways of using R efficiently and productively on LRZ systems (with some focus on machine learning tasks)
• It is not an introduction to R itself
• Many of the topics covered in this course are based on issues encountered by users, for which they created tickets at the LRZ Servicedesk
• Also, it assumes you have some prior knowledge and experience in using GNU/Linux and SSH (if you attended yesterday’s course, you’re well prepared)
• Consider the following – especially during hands-on sessions:
 -> you may want to partner up with the person sitting next to you
 -> the slides will be made available after the workshop
 -> generally: please ask, if you have any questions
HPC Systems for Bavarian Universities

CoolMUC-2 Teramem CoolMUC-3 IvyMUC

DGX-1 (P) DGX-1 (V) 4xP100

DSS (Data Science Storage)

Compute Cloud (OpenStack)

Tape Archive and Backup

lxlogin8.lrz.de
lxlogin[5-7].lrz.de
lxlogin10.lrz.de
https://datalab.srv.lrz.de
https://cc.lrz.de
https://www.rstudio.lrz.de

Using R at LRZ | 09/10/2019 | J. Albert-von der Göonna
• Web-based RStudio frontend
• Cluster of multiple nodes, with
 • 8 cores and
 • 80 GB RAM each
 (upgrade pending, watch out for announcements)
• Connected to the same (DSS-) file systems like the Linux Cluster
• R Notebooks:
 R Markdown documents with code chunks that can be executed independently and interactively, with output visible immediately beneath the input
RStudio Server

https://www.rstudio.lrz.de
• Integrated Terminal: Provides access to the system shell from within RStudio (can be used to submit jobs to the Slurm workload manager of CoolMUC-2)

• At the moment, you need to disable WebSocket support: Tools -> Global Options… -> Terminal
RStudio Server

Using R at LRZ | 09/10/2019 | J. Albert-von der Gönna
• Allows for easy connection to a variety of data sources and to explore the (database) objects and data inside the connection
• Currently supported are SQLite (via ODBC) and Spark. Let us know if you have any other requirements!
• You can open multiple concurrent sessions (please don’t use more than 3 at any given time!)
• This can be used to run multiple analyses in parallel (even using different versions of R) and they can be kept open (almost) indefinitely
RStudio Server

https://www.rstudio.lrz.de
• Connect to the CoolMUC-2 segment of the Linux Cluster

• From a terminal application:
 $ ssh <user>@lxlogin5.lrz.de

• Alternatives would be
 lxlogin[6-7].lrz.de for CoolMUC-2 or
 lxlogin8.lrz.de for CoolMUC-3 or
 lxlogin10.lrz.de for IvyMUC
R Modules

- R is not accessible on the Linux Cluster by default (try: \$ which R)
- Environment modules allow for the dynamic modification of environment variables
- A (minimal) set of default modules is active after login:
 \$ module list
- Use the module system to search for different R versions:
 \$ module available r (or module av r)
R Modules

Using R at LRZ | 09/10/2019 | J. Albert-von der Gönna
R Modules

• (The default/latest version of) R can be loaded using
 \$ module load r

• If you need a different version, you have to specify the full name of the module, e.g. “r/3.4.4-X11-mkl”
R Modules

• We are using the package manager Spack (https://spack.io) to provide applications/modules
• Spack “meta modules” make the (additional) module path(s) available
• By default, the latest LRZ release of Spack is loaded (cf. $ module list)
• Going forward, there might be newer (pre-release) versions of the Spack software stack available (e.g. spack/staging/19.1, spack/master) which might then also provide newer versions of R
• If in doubt, stick to the final releases (i.e. spack/release/YY.X)!
R Package Management

• All R packages are installed into libraries – these are (just) directories in the file system with subdirectories for each installed package
• The default installation of R comes with a single library (R_HOME/library) usually containing the standard and recommended packages (in RStudio, this is called the System Library)
• On a multiuser system, regular users may not add/install packages directly into this library (but administrators can)
• For the latest versions of R on the Linux Cluster we only provide the standard set of base packages in this central location
R Package Management

• Individual users can have (one or more) additional, personal libraries (called User Library in RStudio)
• The path for this library directory can be specified by the environment variable $R_LIBS_USER (amongst others)
• If this is not defined, R will ask you to create a personal package library when installing packages for the first time…
R Package Management

- Notice the suggested path – it is specific to the (minor) version of R!
- You can use the `.libPaths()` function within R to check the current library directories…
R Package Management

• So, subject to the system/cluster segment and R version you’re using, you will depend on different system and user libraries
• You can always control the R packages you use (and their versions) by maintaining your user library...
• … it might be beneficial to do this in a project-specific manner.
R Package Management

- The challenge: on GNU/Linux (most) „add-on“ R packages will be compiled from source
- This requires compilers, tools and additional dependencies available on the system
- The latest versions are not (always) available and this is (typically) not under user control, but if you miss something, make sure to check the available modules!
- As always: if you encounter any problems, please talk to us!

- Optional: there are package managers that can provide (some) of these requirements
- They manage R and (many of) its packages „from the outside“
Slurm Workload Manager

• Slurm is a job scheduler:
 • Allocates access to resources (time, memory, nodes/cores)
 • Provides framework for starting, executing, and monitoring work
 • Manages queue of pending jobs (enforcing “fair share” policy)
• Use the \texttt{sinfo} command to get information about the available clusters
 \texttt{\$ sinfo \ --clusters=all} or, shortened:
 \texttt{\$ sinfo \ --M all}
Slurm Workload Manager

- Look for the cluster segments
 - inter (allows for interactive usage)
 - mpp2 (the main CoolMUC-2 cluster)
 - serial (shared nodes for serial jobs)
- What is their current status?
- Get information about a specific cluster segment, e.g.
 - $ sinfo -M inter or $ sinfo -M mpp2
Interactive R Session

- The inter cluster can be used for interactive resource allocation:

 \$ salloc -p mpp2_inter -n 1

- Once the resources are made available, you can e.g. start a shell on the allocated node:

 \$ srun --pty bash -i

- Using this shell, you can e.g. run R interactively on this node (if the R module is loaded):

 \$ R
Interactive R Session

```
$ salloc -p mpp2_inter -n 1
salloc: Granted job allocation 63127
$ srun --pty bash -i
$ R

R ist freie Software und kommt OHNE JEGLICHE GARANTIE. Sie sind eingeladen, es unter bestimmten Bedingungen weiter zu verbreiten. Tippen Sie 'license()' oder 'licence()' für Details dazu.

R ist ein Gemeinschaftsprojekt mit vielen Beitra
gend. Tippen Sie 'contributors()' für mehr Information und 'citation()', um zu erfahren, wie R oder R packages in Publikationen zitiert werden können.

Tippen Sie 'demo()' für einige Demos, 'help()' für on-line Hilfe, oder 'help.start()' für eine HTML Browserschnittstelle zur Hilfe.

> library(parallel)
> detectCores()
[1] 28
```
Job Processing

- For production jobs, you want to prepare and submit batch scripts.
- They tell Slurm about the resources you need and the scripts/programs you want to run...
#!/bin/bash
#SBATCH --clusters=mpp2
#SBATCH --nodes=1

module load slurm_setup

module load r

Rscript myscript.R

• A very minimal example of a job script (not necessarily recommended, but working in some cases), requesting
 • a single, exclusive node (with 28 CPUs)
 • of the the CoolMUC-2 cluster segment mpp2

• Submit this job script to the queue:
 $ sbatch <myjob.sh>
#!/bin/bash
#SBATCH -o /home/hpc/.../.../myjob.%j.%N.out
#SBATCH -D /home/hpc/.../.../workdir
#SBATCH -J jobname
#SBATCH --get-user-env
#SBATCH --clusters=mpp2
#SBATCH --nodes=1
#SBATCH --mail-type=end
#SBATCH --mail-user=xyz@xyz.de
#SBATCH --export=NONE
#SBATCH --time=08:00:00

module load slurm_setup
module load r

cd workdir

R -f myscript.R

• A more practical example…
 • defining custom output files
 • setting a working directory
 • assigning a job name
 • configuring mail notifications
 • managing the environment
 • limiting walltime explicitly
• See documentation for more options
Job Management and Accounting

- Submit a job:

 $ sbatch myjob.sh

- Query status of your jobs:

 $ squeue -M mpp2 -u <user>

- Approximate start time of pending jobs:

 $ squeue -M mpp2 -u <user> --start

- Abort a job:

 $ scancel -M mpp2 <jobid>

- Get accounting data for (past) jobs:

 $ sacct -X -M mpp2 [-S <YYYY-MM-DD>] -u <user>
Potential Pitfalls

- Jobs get aborted (by Slurm) if they use more resources than specified
 -> you need to estimate memory and runtime requirements
- Estimate memory requirements from a (single, local) serial run, extrapolate if needed
 (use e.g. your system monitor or the “top” command line tool)
- Provide some “buffer” for runtime
- Queuing times can be long
 - Use “sinfo” to find less busy cluster segments
 - Smaller, less demanding jobs generally start faster
 -> you can benefit from accurate resource estimation
Potential Pitfalls

• Debugging can be inconvenient
• The time interval between changes in the R code and seeing results/getting feedback is longer than usual
• The compute environment (compute nodes of the cluster) and the development/test environments (local, login or interactive nodes) are usually not exactly the same
 • Debug as much as possible in a serial fashion
 • Prepare small jobs and test them interactively (using “salloc”)
Parallelization Using R

Using R at LRZ | 09/10/2019 | J. Albert-von der Gönna
Parallelization

Motivation:
• You have a lot of (more or less) independent tasks or

• You want to accelerate a single complex task -> it might be possible to turn the single complex task into many (more or less) independent tasks

…and you have access to a (massively parallel) supercomputer!
Parallelization Scenario: Embarrassingly/Pleasingly Parallel

- many independent processes (10 - 100,000)
- individual task (list) for each process
- private memory for each process
- no communication between processes
- results are stored separately on a (large) storage medium
Parallelization Scenario: Worker Queue

- many independent processes (10 - 100,000)
- central task scheduler (database)
- private memory for each process
- results are sent back to task scheduler
- re-scheduling of failed tasks possible
Parallelization Scenario: Shared Memory

- a few processes working closely together (10-100)
- single task list (script/program)
- shared memory
 (cache coherent non-uniform memory architecture aka ccNUMA)
- results are kept in shared memory
Parallelization Scenario: Message Passing

• many independent processes
 (10 - 100,000)
• one task list (script/program) for all processes
• each process can (in principle) talk to every other process
• private memory
• needs communication strategy in order to scale (area of optimization, e.g. nearest neighbor communication)
• beware of deadlocks!
CRAN Task View: High-Performance and Parallel Computing

Maintainer: Dirk Eddelbuettel
Contact: Dirk.Eddelbuettel@R-project.org
Version: 2018-08-27
URL: https://CRAN.R-project.org/view=HighPerformanceComputing

This CRAN task view contains a list of packages, grouped by topic, that are useful for high-performance computing (HPC) with R. In this section, we are defining 'high-performance computing' rather loosely as just about anything related to packing R a little further: using compiled code, parallel computing (in both explicit and implicit modes), with large objects as well as profiling.

Unless otherwise mentioned, all packages presented with hyperlinks are available from CRAN, the Comprehensive R Archive Network.

Several of the areas discussed in this Task View are undergoing rapid change. Please send suggestions for additions and extensions for this task view to the task view maintainer.

Suggestions and corrections by Aubin Zellius, Markus Schindlerberger, Martin Morgan, Maxim Kuhn, Tamas K. Radityawartha, Jochen Kasch, Tobias VERBale, Hao Yu, David Rosenberg, Marco Brusa, Jyo Welch, Jay Emerson, Wei-Chen Chen, Bill Cleveland, Ross Bayern, Ramon Diaz-Uriarte, Mark Zeilstra, Kevin Ushey, Guido Eßmeier, Will Lundon, Tim Frisz, Ross Mohammad, Stefan Kobil, and Stef Janssen (as well as others I may have forgotten to add here) are gratefully acknowledged.

Contributions are always welcome, and encouraged. Since the start of this CRAN task view in October 2008, most contributions have arrived as email suggestions. The source file for this particular task view file now also reside in a GitLab repository (see below) so that pull requests are also possible.

The easy package supports these Task Views. Its function install.views and update.views respectively, installs or updates of packages from a given Task View; the option force.reinstall can instruct operations to packages listed as core below.

Direct support in R started with release 2.14.0 which includes a new package parallel incorporating (slightly revised) copies of packages multicore and snow. Some types of clusters are not handled directly by the base package 'parallel'. However, and as explained in the package Parallel Computing: Explicit parallelism:

Several packages provide the communications layer required for parallel computing. The file package in this area was open by Li and Rossini which uses the PVVM (Parallel Virtual Machine) standard and Urbanus. support is no longer actively maintained, but available from its CRAN archive directory.

In recent years, the alternative MPI (Message Passing Interface) standard has become the de facto standard in parallel computing. It is supported in R via the Rmpi by Yu. Rmpi package is mainly yet actively maintained and offers access to numerous functions from the MPI API, as well as number of R specific extensions. Rmpi can be used with the Rmpi1, Rmpi2, MPICH, Open MPI, and Gnome MPI implementations. It should be noted that LAM/MPI is now in maintenance mode, and new development is focused on Open MPI.

The parallel package provides 54 classes to directly interface MPI in order to support the Single Program/Multiple Data (SPMD) parallel execution style which is particularly useful for batch parallel execution. The parSLAP builds on this and uses scalable linear algebra packages (namely BLACS, PBLAS, and ScalAPACK) in double precision based on ScalAPACK version 2.0.3. The gRbase package, which provides classes and methods for distributed data types over which the gRbase package provides a distributed data structure for “Programming with Big Data”. The gRbase package provides generic classes and methods for distributed data types over which the gRbase package provides a distributed data structure for “Programming with Big Data”. The gRbase package provides generalization over elements in a collection without the use of an explicit loop counter.

The foreach package allows general iteration over elements in a collection without the use of an explicit loop counter.

- The BiocDA package employs OpenMP to exploit parallelism in the Random Forest algorithms which promises efficient use of multicore hardware in managing data and in describing splitting criteria, both of which are performance bottlenecks in the algorithms.
- The h2o package connects to the h2o open source machine learning environment which has scalable implementations of random forests, GBM, GLM (with elastic net regularization), and deep learning.
- The randomForestSRC package can use both OpenMP as well as MPI for random forest estimators suitable for survival analysis, competing risks analysis, classification as well as regression.
- The Package can perform simulations using one or multiple cores, both locally and on HPC clusters.
- The qStudio package can submit commands to run on a grid engine clusters.
(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
 • basic approach: start as many R processes as you need in the shell with different scripts
Parallelization Using R: Embarrassingly/Pleasingly parallel

```
$ R -f script.R &
```
Parallelization Using R: Embarrassingly/pleasingly parallel

• Use the command line to start your R process (in the background):
 $ Rscript script0.R &

• If you do this repeatedly, the resulting R processes will be distributed by the OS to different cores (subject to availability):
 $ Rscript script1.R &
 $ Rscript script2.R &
 $ Rscript script3.R & …

• To further automate this procedure, you could write a bash script (run_all_R_scripts.sh) containing these commands and then run this single script:
 $ bash run_all_R_scripts.sh &

• Do not start more processes than cores!
• Do not use the (cluster) login nodes for this (e.g. request an interactive shell instead)!
Parallelization Using R: Embarrassingly/pleasingly Parallel

• Let's look at a toy problem:

```r
for(i in 1:20) sum(sort(runif(1e7)))
```

• Are there parallelization opportunities?
• Add a time measurement:

```r
system.time(for(i in 1:20) sum(sort(runif(1e7))))
```

• You might also be familiar with alternatives like the following:

```r
lapply(1:20, function(x) sum(sort(runif(1e7))))
```
(Explicit) Parallelization Using R

- Embarrassingly/pleasingly parallel (independent processes):
 - basic approach: start as many R processes as you need in the shell with different scripts
- Worker Queue (weak coupling, shared file system or database):
 - a master process (with access to a database/shared file system) coordinates several R processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)
Parallelization Using R: Worker Queue

```
$ R -f script.R &
```

Embarrassingly/Pleasingly Parallel

Shared file system or database

- batchtools
- rredis/doRedis
“batchtools provides a parallel implementation of Map for high performance computing systems managed by schedulers like Slurm, …
• all relevant batch system operations (submitting, listing, killing) are either handled internally or abstracted via simple R functions
• with a well-defined interface, the source is independent from the underlying batch system
 - prototype locally, deploy on any high performance cluster”

i.e. a (interactive) R process is used in combination with the shared file system and the workload manager of the cluster to distribute workloads across nodes

Join our course “Advanced HPC Cluster Usage with R” on Friday, 9AM, to learn everything about batchtools!
Parallelization Using R: rredis/doRedis

Redis is an open source, fast, persistent, networked database with many features, among them a blocking queue-like data structure (Redis “lists”). This feature makes Redis useful as a lightweight back end for parallel computing.

A Redis server has to be set up as part of the cluster (e.g. on a login node) or even somewhere else, containing the problem description(s). Worker processes connect to this server and tasks are assigned to them.

This is a very flexible and dynamic approach, as workers can basically run wherever you want (as long as they can connect to the server). When running on the cluster, you have to deal with resource allocation separately (via the Slurm workload manager) and potential firewall access restrictions.
(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
 • basic approach: start as many R processes as you need in the shell with different scripts

• Worker Queue (weak coupling, shared file system or database):
 • a master process (with access to a database/shared file system) coordinates several R processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

• Shared Memory (strong coupling):
 • one R process spawns sub-processes on a single node with many cores (e.g. parallel/doParallel; formerly multicore/doMC, snow/doSNOW)
Parallelization Using R: Shared Memory

Embarrassingly/Pleasingly Parallel

Shared file system or database

Shared memory

$ R -f script.R &

batchtools
rredis/doRedis

parallel/doParallel
Shared Memory Parallelization: Multithreading with doParallel

- As seen earlier, the for loop construct in R:
  ```r
  for(i in 1:20) sum(sort(runif(1e7)))
  # serial execution/single thread
  ```

- “The foreach package provides a new looping construct for executing R code repeatedly. [...] it supports parallel execution, that is, it can execute those repeated operations on multiple processors/cores on your computer, or on multiple nodes of a cluster.”

```r
library(foreach)
foreach(i = 1:20) %do% sum(sort(runif(1e7)))  # serial execution

foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
# multithread execution (?)
```
Shared Memory Parallelization: Multithreading with doParallel

• This is were the “do-back ends” (e.g. doParallel) come into play…
• By creating/registering a cluster, foreach’s %dopar% operator can rely on these parallel resources, e.g. using parallel’s multicore-like functionality (“forking”):

```r
library(foreach)
library(doParallel)
registerDoParallel(cores=2)
  # define number of cores, this enables multicore-functionality
  # (preferred on GNU/Linux, but won’t work on Windows)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
```
Shared Memory Parallelization: Multithreading with doParallel

• The procedure is similar for snow-like functionality:

```r
library(foreach)
library(doParallel)
cluster.object <- makePSOCKcluster(2)
registerDoParallel(cluster.object)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
stopCluster(cluster.object)
```

• This uses Rscript to launch further copies of R (on the same host or optionally elsewhere; in the latter case, hostnames need to be provided)

• [parallel’s snow-like functionality also allows to create MPI-clusters (makeMPIcluster()-function) but Rmpi/doMPI is usually recommended to be used instead]
(Explicit) Parallelization Using R

- Embarrassingly/pleasingly parallel (independent processes):
 - basic approach: start as many R processes as you need in the shell with different scripts
- Worker Queue (weak coupling, shared file system or database):
 - a master process (with access to a database/shared file system) coordinates several R processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)
- Shared Memory (strong coupling):
 - one R process spawns sub-processes on a single node with many cores (e.g. parallel/doParallel; formerly multicore/doMC, snow/doSNOW)
- Message Passing (strong coupling):
 - several R processes talk to each other (across different nodes) by passing messages (e.g. Rmpi/doMPI), this also allows for a (single) master, (multiple) workers model
Parallelization Using R: Message Passing

Embarrassingly/Pleasingly Parallel

Shared file system or database

$ R -f script.R &

batchtools
rredis/doRedis

Shared memory

parallel/doParallel

Message Passing

Rmpi/doMPI
Message Passing with doMPI

- To execute a doMPI script on multiple compute nodes a “message passing environment” needs to be set up, i.e. the R interpreter needs to be executed using a command such as `mpirun` (i.e. `mpirun R -f script.R`)

- Then, the already familiar „do-back end“-pattern is put to use within R:

```r
library(foreach)
library(doMPI)
cluster.object <- startMPIcluster()
registerDoMPI(cluster.object)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
closeCluster(cluster.object)
```
More foreach()

• use times() for simple repetitions:

 \[
 \text{times(10) \%do\% sum(sort(runif(1e7)))}
 \]

• foreach is a function with several arguments...

 \[
 \text{foreach(i = 1:10, .combine = c, \ldots) \%do\% sth() \# process results as they get generated, e.g. c(), cbind(), list(), sum(), \ldots}
 \]

• ... evaluates iterators...

 \[
 \text{foreach(i = iter(input)) \%do\% sth() \# see package iterators}
 \]

• ... and provides additional operators:

 \[
 \text{foreach(i = 1:10) \%:% when(cond) \%do\% sth() \# nesting operator and condition cf. Python’s list comprehensions}
 \]
More parallel

- parallel provides parallel replacements of lapply and related functions (as have snow and multicore):
 - multicore-like: e.g. mclapply(1:10, function(x) sum(sort(runif(1e7)))), mcmapply (x, FUN, ...), mcMap(FUN, ...)
 - snow-like: clusterApply(cl, x, fun, ...), e.g. parLapply(cl, x, FUN, ...)

Using R at LRZ | 09/10/2019 | J. Albert-von der Gönna
Even More parallel: Futures/Promises

- Constructs for synchronizing program execution. Describe objects that act as proxies for a result, which is yet unknown (because the computation is incomplete)
- Send command to background and return handle:
  ```r
  handle <- mcparallel(some_expensive_function)
  ```
- Collect result at later point:
  ```r
  result <- mccollect(handle)
  ```
Futures/Promises

```r
> system.time(sum(sort(runif(1e7))))
  user  system elapsed
 1.581  0.112  1.700

> system.time(sapply(1:20, function(x) sum(sort(runif(1e7)))))
  user  system elapsed
 28.875  2.998  31.883

> library(parallel)
> h <- mcparallel(sapply(1:20, function(x) sum(sort(runif(1e7)))))
> mccollect(h, wait = FALSE)
NULL
# wait approx. 30 seconds for job to finish
> mccollect(h, wait = FALSE)
[1] 5000214 4999121 5001166 ...
Package future tries to unify the previous approaches:

“The purpose of this package is to provide a lightweight and unified Future API for sequential and parallel processing of R expressions via futures. […] Because of its unified API, there is no need to modify any code in order switch from sequential on the local machine to, say, distributed processing on a remote compute cluster. ”

Implicit:

v %<-% { expr } # future assignment, creates a future and a promise to its value (instead of regular assignment <-)

Explicit:

f <- future({ expr }) # creates a future
v <- value(f) # gets the value of the future
(blocks if not yet resolved)
Function `plan()` allows the user to plan the future, i.e. it specifies how futures()s are resolved

For example: `plan(sequential) vs. plan(multiprocess)`

```r
> library("future")
> plan(multiprocess)
> v %<-% {
+ cat("Hello world!\n")
+ 3.14
+ }
> v
Hello world!
[1] 3.14
```
### Futures/Promises

<table>
<thead>
<tr>
<th>Name</th>
<th>OSes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>synchronous:</td>
<td>non-parallel:</td>
<td></td>
</tr>
<tr>
<td>sequential</td>
<td>all</td>
<td>sequentially and in the current R process</td>
</tr>
<tr>
<td>transparent</td>
<td>all</td>
<td>as sequential w/ early signaling and w/out local (for debugging)</td>
</tr>
<tr>
<td>asynchronous:</td>
<td>parallel:</td>
<td></td>
</tr>
<tr>
<td>multiprocess</td>
<td>all</td>
<td>multicore, if supported, otherwise multisession</td>
</tr>
<tr>
<td>multisession</td>
<td>all</td>
<td>background R sessions (on current machine)</td>
</tr>
<tr>
<td>multicore</td>
<td>not Windows</td>
<td>forked R processes (on current machine)</td>
</tr>
<tr>
<td>cluster</td>
<td>all</td>
<td>external R sessions on current, local, and/or remote machines</td>
</tr>
<tr>
<td>remote</td>
<td>all</td>
<td>simple access to remote R sessions</td>
</tr>
</tbody>
</table>

- Additionally: package future.batchtools provides an implementation of the Future API on top of the batchtools package, i.e. it allows to process futures (as defined by the future package) on HPC infrastructure.
• Package doFuture provides a `%dopar% adaptor for the foreach package such that any type of future (that is supported by the Future API of the future package) can be used for asynchronous (parallel/distributed) or synchronous (sequential) processing.

• Example:
  
  ```r
 library(doFuture)
 registerDoFuture()
 plan(multiprocess)
 foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
  ```

• Look out for the use of foreach (and the possibility to register all these different back ends) in other R packages!
Drake is a general-purpose workflow manager for data-driven tasks. It rebuilds intermediate data objects when their dependencies change, and it skips work when the results are already up to date. Not every run-through starts from scratch, and completed workflows have tangible evidence of reproducibility. drake supports scalability, parallel computing (relying on the parallel, future, batchtools, and future.batchtools packages), and a smooth user experience when it comes to setting up, deploying, and maintaining data science projects.
Conclusion

• Parallel programming is here to stay (for the foreseeable future).
• Know your hardware…
• … and the possibilities of your software/programming environment.
• Applying proper (high level) abstractions (foreach, futures,…) to target the features of modern CPUs/GPUs and supercomputing infrastructure will allow you to write fast and scalable programs.