Python primer

Ferdinand.Jamitzky@LRZ.de
Python Intro
More generally, the principle means that a component of a system should behave in a way that most users will expect it to behave; the behavior should not astonish or surprise users.
Login to Jupyter

Start up a browser and enter the following URL:

http://138.246.232.54:8000

Then use the following credentials:
User: user1 ...user99
for x in range(10):
 y = 2 * x
 if x == 0:
 print("x is zero")
 elif x > 5 and x < 10:
 print("x is between 5 and 10")
 else:
 print(f"twice {x} = {y}")

“Python is executable pseudocode. Perl is executable line noise.” (– Old Klingon Proverb)
Beautiful is better than ugly
Explicit is better than implicit
Simple is better than complex
Complex is better than complicated
Readability counts

“There should be one (and only one) obvious way to do it“

"We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%“ (Donald Knuth)
Python in a nutshell
python as seen from the orbit

Python

Basic Language and Syntax
Python 2
Python 3
Cython

Built-in Libraries
Strings, IO
Web, XML
os, zip

External Libraries
NumPy
SciPy
Pandas
Dask

Extensions
Spark
Blender

Web, XML
Tensor Flow
Jupyter
Python Syntax

- basic syntax
 - import, for, if, while, list comprehensions
- advanced syntax
- builtin data types
 - lists, tuples, arrays, sets
 - dicts
 - strings
How to try out python

- python in the browser:
 https://alpha.iodide.io/
def test_index_view_with_a_future_question(self):
 """
 Questions with a pub_date in the future should not be displayed on the index page.
 """
 create_question(question_text="Future question.", days=30)
 response = self.client.get(reverse('polls:index'))
 self.assertEqual(response.status_code, 200)
 self.assertIn(response.context['latest_question_list'], [1])

def test_index_view_with_future_question_and_past_question(self):
 """
 Even if both past and future questions exist, only past questions should be displayed.
 """
 create_question(question_text="Past question.", days=-30)
 create_question(question_text="Future question.", days=30)
 response = self.client.get(reverse('polls:index'))
 self.assertIn(response.context['latest_question_list'], [1])

def test_index_view_with_two_past_questions(self):
 """
 Statement seems to have no effect. Unresolved attribute reference 'test' for class 'QuestionViewTests'.
 """
A web-service where you can run any code through a browser interface.
basic rules of the game

- indentation matters!
- # denotes comments
- lists start from 0
- file type matters (*.py)!
- directory hierarchy matters!

```python
for x in range(10):
    y = 2*x+1
    # here comes the output:
    print(f"y = {y}"),
print("finished loop")
```
 Modules can be defined either by filename or by folder name.

$ python
module by filename
>>> import myfile
module by folder name
>>> import mymod

call:
>>> myfile.myfunc()
hello
>>> mymod.myfunc()
world

$ ls
myfile.py
mymod/
mymod/__init__.py

myfile.py:
def myfunc():
 print(“hello”)

mymod/__init__.py:
def myfunc():
 print(“world”)

basic rules of the game
Variable names

- Variable names can consist of:
 - Alphabetic (also Greek or Umlauts)
 - Numbers
 - Underscore `_`

- Variables have to start with Alphabetic or Underscore `_`
e.g. this is valid:
 `_sumOfAll_µ` ラ

- Try to stick to ASCII for readability, but YMMV

Länge = [10,20,30,40,50]

#Berechne Mittelwert
ΣLänge = 0

for L in Länge:
 ΣLänge = ΣLänge + L
μ = ΣLänge / len(Länge)

print(f"Mittelwert = {µ}")

#this is valid:
ラーメン = "delicious"
π = 3.14159
jalapeño = "a hot pepper"
Python has the following number types:
- int, long, float, complex

Strings
- "this", 'this', """"this""""", '''this''', u'this', b'this'

Lists and tuples
- a=[1,2,3] is a list,
- b=(1,2,3) is a tuple (immutable)

Dictionaries aka Associative Arrays
- a={ 'one': 1, 'two': "zwei"} is a dict
import lib as name

from lib import n as n

if condition:
 elif condition:
 else:

for iterator in list:
 pass
break
continue

[expr for it in list if cond]

while condition:
 def function:
 """doc string""
 return value

class name:
 def __init__(self):
 def method(self):
raise name

$\texttt{try:}$

$\texttt{except name:}$

$\texttt{finally:}$

$\texttt{with expression as var:}$

$\texttt{global variable}$

$\texttt{nonlocal variable}$

$\texttt{lambda var: expression}$

$\texttt{@decorator}$

$\texttt{async def fun -> ann:}$

$\texttt{assert condition}$

$\texttt{yield value}$

$\texttt{yield from generator}$

$\texttt{await expression}$
Syntax
The import statement, which is used to import modules whose functions or variables can be used in the current program. There are four ways of using import:

```python
>>> import numpy
>>> from numpy import *
>>> import numpy as np
>>> from numpy import pi as Pie
```
while

x=0.1
n=0

while x>0 and x<10:
 x*=2
 n+=1
 if n>1000:
 break

run the loop until the "while" condition is false or the "if" condition is true.
for i in list:
 do_something_with(i)
print result(i)
if cond(i):
 break

loops over a list, prints the result and stops either when the list is consumed or the break condition is fulfilled
• text files

  ```python
  dd=open("data.txt").readlines()
  ```

• print lines

  ```python
  [x[:-1] for x in open("data.txt","r").readlines()]
  ```

• pretty print

  ```python
  from pprint import pprint
  pprint(dd)
  ```

• binary files

  ```python
  xx=open("data.txt","rb").read()
  xx.__class__
  ```
make script executable:
$ chmod u+x myscript.py

myscript.py:
#!/usr/bin/python
#!/usr/bin/env python2.7
import sys
print "The name of the script: ", sys.argv[0]
print "Number of arguments: ", len(sys.argv)
print "The arguments are: " , str(sys.argv)

in larger scripts use the argparse library
Data Structures
Python has the following number types:
- int, long, float, complex
- del var

```python
>>> x=0
>>> x=1234567890123456789012345
>>> x**2
1524157875323883675049533479957338669120562399025
```
basic types

```python
>>> x=1234567890123456789012345
>>> float(x)**12
1.2536598767934103e+289
>>> float(x**12)
1.2536598767934098e+289
>>> x**12
1253659876793409883851559879573446207197727634355584126439186347088600086846224762891894081229041240250793488982070425046444463778641104140990841878266383680568044115362044404388409544441384289179095087047608175790842338441544887228788494128120919791295898721196764732642609051396426025390625
```
Imaginary and complex numbers are built in:

```python
>>> 1j**2               # imaginary unit
(-1+0j)

>>> (1+1j)**4            # 4th root of -4
(-4+0j)

>>> 1j**1j              # i to the i
(0.20787957635076193+0j)

>>> import cmath

>>> cmath.log(-1)
3.141592653589793j      # pi
```
Strings

python2 has byte strings, python3 has Unicode strings
- "this", 'this', """"this""""", '''this''', u'this', b'this'
- string interpolation (masks)
 >>> "one plus %i = %s" % (1,"two")
- indexing strings: a="1234"
 >>> print a[0] -> 1
 >>> print a[0:] -> 1234
 >>> print a[0:-1] -> 123
 >>> print a[0::2] -> 13
 >>> print a[::-1] -> 4321
 >>> print a[-1::-2] -> 42
• split strings
 >>> dd="a b c d"
 >>> dd.split()
 ['a', 'b', 'c', 'd']
• join strings
 >>> " ".join(['a', 'b', 'c', 'd'])
• combine both
 >>> " ".join(["<"+x"/>" for x in dd.split()])
 '<a/> <c/> <d/>'
• **Lists** are what they seem - a list of values. Each one of them is numbered, starting from zero. You can remove values from the list, and add new values to the end. Example: Your many cats' names.

• **Tuples** are just like lists, but you can't change their values. The values that you give it first up, are the values that you are stuck with for the rest of the program.

• **Dictionaries** are similar to what their name suggests - a dictionary, or aka associative array or key-value store
Simple list:

```python
>>> x=[1,2,3]
>>> x.append("one")
>>> y=x
>>> y[0]=2
>>> x[0]
2
>>> x.append(x)
>>> x
[2, 2, 3, 'one', [...]]
```
tuples are immutable lists

```python
>>> a=(1,2,3)
>>> a[1]=3
-> error
```

reason for tuples: faster access
list comprehensions

- A list is defined by square brackets.
- A list comprehension uses square brackets and `for`.

```python
>>> x=[1,2,3,4,5]
>>> y=[i for i in x]

>>> 
```

```python
"<br>").join([s.split("\n") for s in open("file.txt").readlines()])
```

```python
>>> import random.uniform as r
>>> np=1000000
>>> sum([(r(0,1)**2+r(0,1)**2 < 1) for i in range(np)])/np*4.
3.141244
```
dictionaries aka associative arrays aka key/value stores

```python
>>> a={'one':1, 'two':2.0, 'three':[3,3,3]}

dictionary comprehensions:
```n
```python
>>> {i:i**2 for i in range(4)}
{0: 0, 1: 1, 2: 4, 3: 9}
```n
```python
>>> a.keys()
```n
```python
>>> a.values()
```
for loops with dicts

you can loop over a dict by:

```
>>> knights = {'gallahad': 'the pure',
             'robin': 'the brave'}
>>> for k, v in knights.items():
...     print(k, v)
```

or

```
>>> {'k'+' '+v for k,v in knights.items()}
>>> [k+' '+v for k,v in knights.items()]
```
arrays

arrays are lists with the same type of elements
there exists a special library for numeric arrays (numpy) which never made it into the official distribution.

they serve as an interface to c-code. If you need numerical arrays use the numpy library (see below)
sets are unordered lists. They provide all the methods from set theory like intersection and union. Elements are unique.

```python
>>> x = set((1, 2, 3, 4, 1, 2, 3, 4))
>>> x
{1, 2, 3, 4}
>>> x & y
>>> x | y
>>> x - y
>>> x ^ y
```
python2 vs python3

- why python3?
 - you need Unicode?
 - you want to use generators (yield) extensively
- why python2?
 - many lists are iterators in py3 (range, filter, zip, map,...)
 - many old packages do not (yet) have a python3 version

- use 2to3 converter (or 3to2 for backwards)
 $ 2to3 myprog.py
Functions
functions

- keywords
- doc strings
- specials:
 - lambda
 - yield, yield from
 - annotations
 - async, await, ...
def myfun(a, b=1, c=[1,2], *args):
 "description goes here"
 return a, b, c, args

>>> myfun(0)
(0,1,[1,2],())

>>> myfun(0, c=2)
(0,1,2,())

>>> myfun(0, 1, 2, 3, 4)
(0,1,2,(3,4))
functions: lambda functions

f1 = lambda x: x+1

def f2(x):
 return x+1

f = lambda *x:x

>>> f("one",2,[])
("one",2,[])
Compute prime numbers up to 30

```python
def isprime(n):
    return n not in \
    [x*y for x in range(n) for y in range(n)]

print([[n for n in range(2,30) if isprime(n)]]
```
Classes
Everything in python is an Object (numbers too)
Objects: instances of classes
Classes: blueprints for objects
Methods: functions attached to objects
Classes can inherit "blueprints" from other classes

```python
>>> a=[]
>>> type(a)
>>> print a.__class__
>>> print dir(a)
>>> a.__doc__
```
class point2d:
 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y
 def move(self, dx=0, dy=0):
 self.x += dx
 self.y += dy
 return self
 def __str__(self):
 return f"Point at {self.x}, {self.y}"
class usage

```python
>>> p0=point2d()
>>> p1=point2d(x=1)
>>> p2=point2d(3,4)

>>> p0.move(1,2)
>>> p3 = p1.move(dx=2).move(dy=3)
>>> print(p3)
```
function names with leading and trailing underscores are special in python ("magic methods")

```python
>>> str(a)
```

is translated to:

```python
>>> a.__str__()
```

and

```python
>>> a+b
>>> a.__add__(b)
```

```python
>>> f(x)
>>> f.__call__(x)
```
Advanced Topics
Advanced topics

- try-except
- decorators
- with
- yield
- aspect oriented programming
using try you can catch an exception that would normally stop the program

```python
x=range(10)
y=[0]*10
for i in range(10):
    try:
        y[i]=1./x[i]
    except:
        y[i]=0.
```
decorators are syntactic sugar for applying a function and overwriting it.

```
@mydecorator
def myfunc():
    pass
```

is the same as:

```
def myfunc():
    pass
myfunc = mydecorator(myfunc)
```
@mymacro
def ff(y):
 return y*2

def mymacro(f):
 return lambda *x: "Hey! "+str(f(*x))

def mymacro(somefunc)
 def tempfunc(*x):
 return "Hey! "+str(somefunc(*x))
 return tempfunc
with statement examples

You need a context manager (has enter and exit methods)

Examples:
- opening and automatically closing a file

  ```python
  with open("/etc/passwd") as f:
    df=f.readlines()
  ```
- database transactions
- temporary option settings
- ThreadPoolExecutor
- log file on/off
- cd to a different folder and back
- set debug verbose level
- change the output format or output destination

```python
with redirect_stdout(sys.stderr):
  help(pow)
```
The with statement allows for different contexts

```python
with EXPR as VAR:
    BLOCK
```

roughly translates into this:

```python
VAR = EXPR
VAR.__enter__()
try:
    BLOCK
finally:
    VAR.__exit__()```

with statement motivation
generators

- `range(10000)` would generate a list of 10000 numbers although they would later on not be needed.
- Generators to the rescue!!
- Only generate what you really need.
- New keyword: `yield` (instead of `return`)

```python
>>> def createGenerator():
... yield "one"
... yield 2
... yield [3,4]
...
>>> a = createGenerator()
>>> next(a)
"one"
```
• like list comprehensions, but computed only when needed

```python
>>> a = (i**4 for i in range(8))
>>> next(a)
0
>>> next(a)
1
>>> list(a)
[16, 81]
```
AOP is about separating out Aspects
You can switch contexts (like log-file on/off)

```python
print("foo")
with tag("h1"):
 print("foo")

foo
<h1>foo</h1>

from contextlib import contextmanager
@contextmanager
def tag(name):
 print("<%s>" % name)
 yield
 print("</%s>" % name)
```
Package Managers
conda

- conda is a package manager in user space.
- tool to create isolated python installations
- it allows you to use multiple versions of python
- substitutes virtualenv (dead since 2016)
- commercial tool: anaconda
- 2 versions miniconda (free), anaconda (commercial)
- works on linux, MS-win, macOS
- packages are provided by channels (anaconda, conda-forge, bioconda, intel)
Python has a plentitude of package managers and package formats (contradicts zen of Python), so don’t get confused:

- easy_install, virtualenv (dead)
- pip (alive, default package manager for Python)
- conda (state of the art)
- Data formats:
  - wheel (official package format PEP427)
  - egg (old package format)
• simple packages management tool for python
• comes preinstalled with python
• complementary to conda
• packages are called *.whl (wheel)
• easy_install is dead

$ pip install SomePackage                # latest version
$ pip install SomePackage==1.0.4         # specific version
$ pip install 'SomePackage>=1.0.4'       # minimum version
$ pip install --upgrade SomePackage      # upgrade
$ conda create -n my_env python=3.6
$ conda install -c conda-forge scipy=0.15.0
$ conda list
$ conda search numpy
$ conda update -all
$ conda info numpy
• On each node there is a system python installed. Don't use it!
• Use the module system:

$ module avail python
------------------------------- /lrz/sys/share/modules/files/tools -------------------
python/2.7_anaconda_nompi  python/2.7_intel(default)  python/3.5_intel

$ module load python

$ python
Python 2.7.13 (default, Jan 11 2017, 10:56:06) [GCC] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
Generate your own python LRZ environment

- LRZ uses the conda package manager for python libraries. In the default module only a minimal set of libraries is provided. You have to generate your own environment to get more.

$ module load python

$ conda create -n py36 python=3.6

$ source activate py36

$ conda install scipy=0.15

$ conda list
Shells
the python interactive command line interface was not very comfortable, so ipython was born. It evolved later on to a Web-Interface (jupyter). You can enter even shell commands.

$ ipython
Type 'copyright', 'credits' or 'license' for more information
IPython 6.1.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: pwd
Out[1]: '/home/hpc/pr28fa/a2815ah'
In [2]: import os; os.getcwd()
Out[2]: '/home/hpc/pr28fa/a2815ah'
ipython is a hybrid between the python cli, a bash shell and macros. It recognizes shell commands (ls, pwd, cp, ..) and macros (magic commands) can be defined by %name or %%name.

In [2]: %timeit sum(range(1000))
20.8 µs ± 412 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

In [13]: %%timeit
   ...: x=sum(range(100))
   ...: y=x+1
   ...:
1.52 µs ± 5.34 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
help information can be retrieved by \texttt{?command} and more detailed information by \texttt{??command}

In [17]: \texttt{?pprint}\n
Docstring: Toggle pretty printing on/off.\nFile: ~/.conda/envs/py36/lib/python3.6/site-packages/IPython/core/magics/basic.py

In [16]: \texttt{??pprint}\n
Source:

@line_magic
def pprint(self, parameter_s=''):  
    """Toggle pretty printing on/off.""
    ptformatter = self.shell.display_formatter.formatters['text/plain']
    ptformatter.pprint = bool(1 - ptformatter.pprint)
    print('Pretty printing has been turned',...
finally ipython evolved into a web-service where you can run any code through a browser interface and even plot.
Explain what the following commands return

```python
>>> !ls
>>> files=!ls -al
>>> files.sort(5,num=True)
>>> files.grep("a",field=2)
>>> %cd
>>> %timeit
```
Computing and Plotting Libraries
Numerical Computations
- a powerful N-dimensional array object
- sophisticated (broadcasting) functions
- tools for integrating C/C++ and Fortran code
- useful linear algebra, Fourier transform, and random number capabilities
- for comparison to other array languages (Numpy vs MATLAB, R, IDL) see:

  http://mathesaurus.sourceforge.net/
NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy dimensions are called axes.

```python
>>> A=[[1., 0., 0.],[0., 1., 2.]]
>>> A.ndim
>>> A.shape
>>> A.size
>>> A.dtype
>>> A.itemsize
```
>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')
Array Creation

```python
>>> np.zeros((3,4))
>>> np.ones((3,4), dtype=np.int16)
>>> np.empty((2,3))
>>> np.arange(10,30,5)
>>> np.arange(0,2,0.3)
>>> np.linspace(0,2,9)
>>> b = np.arange(12).reshape(4,3)
```
Vector Operations on Arrays:
- elementwise add, subtract, multiply, divide, power
- special functions: sin, cos, ...
- elementwise comparison
- Matrix Product A@B
- in place operations A+=3
- A.sum(), A.cumsum(), A.min(), A.max()
Universal Functions

- these functions operate elementwise on an array, producing an array as output

all, any, apply_along_axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj, corrcoef, cov, cross, cumprod, cumsum, diff, dot, floor, inner, inv, lexsort, max, maximum, mean, median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum, trace, transpose, var, vdot, vectorize, where
Indexing, Slicing, Iterating

- indexing and slicing like for python lists

```python
>>> a[2:5]
>>> a[:::-1]
>>> b[1:3, :]
>>> b[-1]
```
Stacking Arrays

```python
>>> np.vstack((a, b))
array([[8., 8.],
 [0., 0.],
 [1., 8.],
 [0., 4.]]
>>> np.hstack((a, b))
array([[8., 8., 1., 8.],
 [0., 0., 0., 4.]]
```
• Simple assignments make **no** copy of array objects or of their data.

```python
>>> a = np.arange(12)
>>> b = a # no new object is created
>>> b is a # a and b are two names for the same object
True
>>> d = a.copy() # a new array object with new data is created
>>> d is a
False
```
Numpy has a plentitude of random number distributions uniform:

```python
>>> A = np.random.random((2,3))
>>> A = np.random.uniform(size=10)
```

Others are:
beta, binomial, chisquare, dirichlet, exponential, F, gamma, geometric, gumbel, hypergeometric, laplace, logistic, lognormal, logseries, multinormal, normal, pareto, poisson, power, Rayleigh, Cauchy, standard_t, triangular, uniform, vonmises, wald, weibull, zipf
Explain the output of the following commands:

```python
>>> import numpy as np
>>> x = np.array([1, 2, 3])
>>> x
>>> y = np.arange(10)
>>> y
>>> a = np.array([1, 2, 3, 6])
>>> b = np.linspace(0, 2, 4)
>>> c = a - b
>>> c
>>> a**2
```
import matplotlib.pyplot as plt
import numpy as np

# Data for plotting
s = np.arange(0.0, 2.0, 0.01)
t = s + np.sin(2 * np.pi * s)

# Note that using plt.subplots below is equivalent to using
# fig = plt.figure() and then ax = fig.add_subplot(111)
fig, ax = plt.subplots()
ax.plot(t, s)
ax.set(xlabel='time (s)', ylabel='voltage (mV)',
       title='About as simple as it gets, folks')
ax.grid()

fig.savefig("test.png")
plt.show()
matplotlib

pcolor mesh with levels

contour with levels

Scores by group and gender

Volume and percent change
Simple spectral analysis

An illustration of the Discrete Fourier Transform using windowing, to reveal the frequency content of a sound signal.

\[ X_k = \sum_{n=0}^{N-1} x_n e^{-j\frac{2\pi}{N}kn} \quad k = 0, \ldots, N - 1 \]

We begin by loading a data file using Scipy's audio file support:

```
In [1]: from scipy.io import wavfile
 ...: rate, x = wavfile.read('test_mono.wav')
```

And we can easily view its spectral structure using matplotlib's built-in spectrogram routine:

```
In [2]: import matplotlib.pyplot as plt
 ...: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
 ...: ax1.plot(x); ax1.set_title('Raw audio signal')
 ...: ax2.specgram(x, x2.set_title('Spectrogram'))
```
Data Analysis using Pandas
Pandas – Data Frames for python

- DataFrame object for data manipulation with integrated indexing.
- Tools for reading and writing data between in-memory data structures and different file formats.
- Data alignment and integrated handling of missing data.
- Reshaping and pivoting of data sets.
- Label-based slicing, fancy indexing, and subsetting of large data sets.
- Data structure column insertion and deletion.
- Group by engine allowing split-apply-combine operations on data sets.
- Data set merging and joining.
- Hierarchical axis indexing to work with high-dimensional data in a lower-dimensional data structure.
- Time series-functionality: Date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging.
The two primary data structures of pandas

- Series (1-dimensional)
- DataFrame (2-dimensional)

handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering.

For R users:

- DataFrame provides everything that R’s data.frame provides
- pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.
Dataframes and Series

DataFrame is a container for Series, and Series is a container for scalars.

```python
for col in df.columns:
 series = df[col]
 # do something with series

s = pd.Series([1, 3, 5, np.nan, 6, 8])
```
Object Creation
Viewing Data
Selection
Missing Data
Operations
Merge
Grouping
Reshaping
Time Series
Categorials
Plotting
Data I/O
Creating a Series by passing a list of values, letting pandas create a default integer index:

```python
s = pd.Series([1, 3, 5, np.nan, 6, 8])
```

Creating a DataFrame by passing a NumPy array, with a datetime index and labeled columns:

```python
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
```
Viewing Data

df.head()
df.tail(3)
df.index
df.columns
df.to_numpy()
df.describe()
Selection

df['A']
df[0:3]
df.loc[:, ['A', 'B']]
df.iloc[3:5, 0:2]
df[df.A > 0]
df[df > 0]
df2[df2['E'].isin(['two', 'four'])]
df.loc[:, 'D'] = np.array([5] * len(df))
df2[df2 > 0] = -df2
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
df1.dropna(how='any')
df1.fillna(value=5)
pd.isna(df1)
Operations

df.mean()
df.mean(1)
df.apply(np.cumsum)
df.apply(lambda x: x.max() - x.min())
s.value_counts()
s.str.lower()
pieces = [df[:3], df[3:7], df[7:]]
pd.concat(pieces)
pd.merge(left, right, on='key')
df.append(s, ignore_index=True)
Grouping

By “group by” we are referring to a process involving one or more of the following steps:

- Splitting the data into groups based on some criteria
- Applying a function to each group independently
- Combining the results into a data structure

```python
>>> df.groupby('A').sum()
>>> df.groupby(['A', 'B']).sum()
```
Reshaping

- **Stack**
  The stack() method “compresses” a level in the DataFrame’s columns.

- **Pivot Table**

  ```python
 >>> pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
  ```
Plotting

```python
>>> ts = pd.Series(np.random.randn(1000),
 index=pd.date_range('1/1/2000', periods=1000))
>>> ts = ts.cumsum()
>>> ts.plot()
```
Getting Data In/Out

- **CSV**
  ```python
 >>> pd.read_csv('foo.csv')
 >>> df.to_csv('foo.csv')
  ```

- **Excel**
  ```python
 >>> pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
 >>> df.to_excel('foo.xlsx', sheet_name='Sheet1')
  ```

- **HDF5**
  ```python
 >>> pd.read_hdf('foo.h5', 'df')
 >>> df.to_hdf('foo.h5', 'df')
  ```
Machine Learning Packages
Python Packages

- Theano (discontinued)
- Tensorflow (Google)
- Torch/PyTorch (Facebook)
- MXnet (Apache, Amazon)
- CNTK (Microsoft)
- Keras (on top of Tensorflow, Theano or CNTK)
- Caffe / Caffe2 (Facebook, lightweight)
- PaddlePaddle (Baidu for text mining in English and Chinese)
- Scikit Learn (google summer of code)
Theano:

- numerical computation library for Python
- computations are expressed using a Numpy-esque syntax
- compiled to run efficiently
- CPU or GPU architectures
- Dead since 2017, but still in use
- Developers now at google
• TensorFlow
• open-source software library
• dataflow programming across a range of tasks
• symbolic math library
• used for machine learning applications
• neural networks
• research and production at Google
• very active
• steep learning curve
# load TensorFlow
>>> import tensorflow as tf
# Initialize two vectors
>>> x = tf.constant([1,2,3,4])
>>> y = tf.constant([5,6,7,8])
# Multiply
z = tf.multiply(x, y)
# Initialize Session and run
>>> with tf.Session() as sess:
     ... out = sess.run(z)
     ... print(out)
6
# load TensorFlow

```python
>>> import tensorflow as tf

Initialize two vectors

>>> x = tf.constant([1, 2, 3, 4])

>>> y = tf.constant([5, 6, 7, 8])

Multiply

z = tf.multiply(x, y)

Initialize Session and run

>>> with tf.Session() as sess:

 . . . out = sess.run(z)

 . . . print(out)

6
```
- Keras is a high-level neural networks API
- Running on top of TensorFlow, CNTK, or Theano
- Developed with a focus on enabling fast experimentation
- Allows for easy and fast prototyping (through user friendliness, modularity, and extensibility)
- Supports both convolutional networks and recurrent networks, as well as combinations of the two
- Runs seamlessly on CPU and GPU
# resnet50 pretrained application in keras

```python
from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np

model = ResNet50(weights='imagenet')
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
decode the results into a list of tuples (class, description, probability)
(one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
Predicted: [(u'n02504013', u'Indian_elephant', 0.82658225), (u'n01871265', u'tusker', 0.1122357), (u'n02504458', u'African_elephant', 0.061040461)]
```
Parallel and distributed programming
Why?

- You have many independent tasks (easy)
- You want to accelerate single complex task (hard)

Recipe:
Turn the single complex task into many independent simple tasks, but how?
How-to go parallel

Why?
● You have many independent tasks (easy)
or
● You want to accelerate single complex task (hard)

Recipe:
Turn the single complex task into many independent simple tasks, but how?
Why parallel programming?

End of the free lunch

Moore's law means no longer faster processors, only more of them. But beware!

2 x 3 GHz < 6 GHz

(cache consistency, multi-threading, etc)
Supercomputer scaling
Parallel and Distributed Programming

- multiprocessing
- Mpi4py
- Ipython parallel
- dask

See also:
https://chryswoods.com/parallel_python/README.html
Global Interpreter Lock (GIL)

- The standard Python interpreter (called CPython) does not support the use of threads well.
- The CPython Python interpreter uses a “Global Interpreter Lock” to ensure that only a single line of a Python script can be interpreted at a time, thereby preventing memory corruption caused by multiple threads trying to read, write or delete memory in parallel.
- Because of the GIL, parallel Python is normally based on running multiple forks of the Python interpreter, each with their own copy of the script and their own GIL.
Embarrassingly parallel

- many independent processes (10 - 100,000)
- no communication between processes
- individual tasklist for each process
- private memory for each process
- results are stored in a large storage medium
Embarrassingly parallel (step-by-step)

- Take as example the following script

  `myscript.sh`:

  ```bash
 #!/bin/bash
 source /etc/profile.d/modules.sh
 module load python
 source activate py36
 cd ~/mydir
 python myscript.py
  ```

  You can run it interactively by:

  `./myscript.sh`
Embarrassingly parallel (step-by-step)

Please do not block the login nodes with production jobs, but run the script in an interactive slurm shell:

$ salloc --pmpp2_inter --nl myscript.sh

Change the last line in the script:

#!/bin/bash
source /etc/profile.d/modules.sh
module load python
source activate py36
cd ~/mydir
srun python myscript.py
Run multiple copies of the script in an interactive slurm shell:

```bash
$s salloc -pmpp2_inter -n4 myscript.sh
```

You will get 4 times the output of the same run.

To use different input files you can use the environment variable:

```python
os.environ['SLURM_PROCID']
```

(it is set to 0, 1, 2, 3, ...)

Use this variable to select your workload.

Example:

```bash
$s salloc -pmpp2_inter -n2 srun python --c "import os; os.environ['SLURM_PROCID']"
```

```
0
1
```
Run the script as slurm batch job:

$ sbatch -pmpp2_inter -n4 myscript.sh

You can put the options inside the slurm file:

#!/bin/bash

#SBATCH -pmpp2_inter
#SBATCH -n4

source /etc/profile.d/modules.sh

module load python

cd ~/mydir

srun python myscore.py
Embarrassingly parallel (step-by-step)

For serial (single node, multithreaded but not MPI) loads use the serial queue and add options for the runtime:

```bash
#!/bin/bash
#SBATCH --clusters=serial
#SBATCH -n4 # 4 tasks
#SBATCH --time=01:00:00 # 1hour
source /etc/profile.d/modules.sh
module load python
cd ~/mydir
srun python myscript.py

$ sbatch myscript.slurm
```
If you want to send a large number of jobs then use Job Arrays.

```
$ sbatch -array=0-31 myscript.slurm
```

The variable SLURM_ARRAY_TASK_ID is set to the array index value. Get it in python via:

```
import os
os.environ['SLURM_ARRAY_TASK_ID']
```

The maximum size of array job is 1000
Important SLURM commands

- List my jobs:
  
  ```
 $ squeue -Mserial -u <uid>
  ```

- Cancel my job
  
  ```
 $ scancel <jobid>
  ```

- Submit batch job
  
  ```
 $ sbatch myscript.slurm
  ```

- Run interactive shell
  
  ```
 $ salloc -n1 srun --pty bash -i
  ```
Ipython and ipcluster

The **ipcluster** command provides a simple way of starting a controller and engines in the following situations:

- When the controller and engines are all run on localhost. This is useful for testing or running on a multicore computer.
- When engines are started using the `mpiexec` command that comes with most MPI implementations
- When engines are started using the SLURM batch system
Starting ipcluster:

```
$ ipcluster start -n 4
```

Then start ipython and connect to the cluster:

```
$ ipython
```

In [1]: from ipyparallel import Client

In [2]: c = Client()

   ...: c.ids

   ...: c[:].apply_sync(lambda: "Hello, world!")

Out[2]: ['Hello, world!', 'Hello, world!', 'Hello, world!', 'Hello, world!']
Create a parallel profile:
ipython profile create --parallel --profile=slurm

cd into ~/.ipython/profile_slurm/ and add the following:

```
ipcontroller_config.py:
c.HubFactory.ip = u'*'
c.HubFactory.registration_timeout = 600

ipengine_config.py:
c.IPEngineApp.wait_for_url_file = 300
c.EngineFactory.timeout = 300
```
ipcluster_config.py:

c.IPClusterStart.controller_launcher_class = 'SlurmControllerLauncher'
c.IPClusterEngines.engine_launcher_class = 'SlurmEngineSetLauncher'
c.SlurmEngineSetLauncher.batch_template = """#!/bin/sh
#SBATCH --ntasks={n}
#SBATCH --clusters=serial
#SBATCH --time=01:00:00
#SBATCH --job-name=ipy-engine-
srun ipengine --profile-dir="{profile_dir}" --cluster-id=""""
Usage of ipcluster

Start a python shell and import the client function

```python
>>> from ipyparallel import Client
```

Connect to the ipcluster

```python
>>> c=Client(profile="slurm")
```

Generate a view on the cluster

```python
>>> dview=c[:]
```

The view can now be used to perform parallel computations on the cluster
Usage of ipcluster

Run a string containing python code on the ipcluster:
```python
>>> dview.execute("import time")
```

Run a single function and wait for the result:
```python
>>> dview.apply_sync(time.sleep, 10)
```

Or return immediately:
```python
>>> dview.apply_async(time.sleep, 10)
```

Map a function on a list by reusing the nores of the cluster:
```python
>>> dview.map_sync(lambda x: x**10, range(32))
```
Define a function that executes in parallel on the ipcluster:

```python
In [10]: @dview.remote(block=True)
 : def getpid():
 : import os
 : return os.getpid()
 :
In [11]: getpid()
Out[11]: [12345, 12346, 12347, 12348]
```
The @parallel decorator parallel functions, that break up an element-wise operations and distribute them, reconstructing the result.

In [12]: import numpy as np
In [13]: A = np.random.random((64,48))
In [14]: @dview.parallel(block=True)
    ....: def pmul(A,B):
    ....:     return A*B
You can create a view of the ipcluster that allows for loadbalancing of the work:

```python
>>> lv=c.load_balanced_view()
```

This view can be used with all the above mentioned methods, such as: execute, apply, map and the decorators.

The load balancer can even have different scheduling strategies like "Least Recently Used", "Plain Random", "Two-Bin Random", "Least Load" and "Weighted"
Shared Memory (your laptop)

- a few threads working closely together (10-100)
- shared memory
- single tasklist (program)
- cache coherent non-uniform memory architecture aka ccNUMA
- results are kept in shared memory
Multiprocessing allows your script running multiple copies in parallel, with (normally) one copy per processor core on your computer.

One is known as the master copy, and is the one that is used to control all of worker copies.

It is not recommended to run a multiprocessing python script interactively, e.g. via ipython or ipython notebook.

It forces you to write it in a particular way. All imports should be at the top of the script, followed by all function and class definitions.
# all imports should be at the top of your script
import multiprocessing, sys, os

# all function and class definitions must be next
def sum(x, y):
    return x+y

if __name__ == "__main__":
    # You must now protect the code being run by
    # the master copy of the script by placing it

    a = [1, 2, 3, 4, 5]
    b = [6, 7, 8, 9, 10]

    # Now write your parallel code... etc. etc.
from multiprocessing import Pool, current_process

def square(x):
    print("Worker %s calculating square of %d" % (current_process().pid, x))
    return x*x

if __name__ == "__main__":
    nprocs = 2

    # print the number of cores
    print("Number of workers equals %d" % nprocs)

    # create a pool of workers
    pool = Pool(processes=nprocs)

    # create an array of 10 integers, from 1 to 10
    a = range(1,11)

    result = pool.map( square, a )
    total = reduce( lambda x,y: x+y, result )

    print("The sum of the square of the first 10 integers is %d" % total)
• Use futures and a context manager:

```python
from concurrent.futures import ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=1) as ex:
 future = ex.submit(pow, 323, 1235)
 print(future.result())
```
Message Passing

- many independent processes (10 - 100,000)
- one tasklist for all (program)
- everyone can talk to each other (in principle)
- private memory
- needs communication strategy in order to scale out
- very often: nearest neighbor communication
- beware of deadlocks!
$ mpiexec -n 4 python myapp.py

from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
if rank == 0:
    data = {'a': 7, 'b': 3.14}
    comm.send(data, dest=1, tag=11)
elif rank == 1:
    data = comm.recv(source=0, tag=11)
Worker queue

- many independent processes (10 - 100.000)
- central task scheduler (database)
- private memory for each process
- results are sent back to task scheduler
- rescheduling of failed tasks possible
**Familiar:** Provides parallelized NumPy array and Pandas DataFrame objects

**Flexible:** Provides a task scheduling interface for more custom workloads and integration with other projects.

**Native:** Enables distributed computing in Pure Python with access to the PyData stack.

**Fast:** Operates with low overhead, low latency, and minimal serialization necessary for fast numerical algorithms

**Scales up:** Runs resiliently on clusters with 1000s of cores

**Scales down:** Trivial to set up and run on a laptop in a single process, even on a smartphone running android

**Responsive:** Designed with interactive computing in mind it provides rapid feedback and diagnostics to aid humans
dask arrays are composed of NumPy arrays.

- the subarrays can live in the same process or in another process on a different node

- dask has a scheduler which distributes the work on a whole cluster if needed

```python
>>> import dask.array as da
>>> a = da.random.uniform(size=1000, chunks=100)
```

https://docs.dask.org/en/latest/array-api.html
dask.dataframe

- like dask.arrays uses numpy arrays, dask.dataframe uses pandas
- dask.dataframes can be distributed over a cluster of nodes and operations on them are scheduled by the dask scheduler

```python
>>> import dask.dataframe as dd
>>> df=dd.read_csv('2014-*,.csv')
```
>>> a = da.random.uniform(size=1000, chunks=100)
>>> b = a.sum()
>>> c = a.mean() * a.size
>>> d = b - c
>>> d.compute()

the computation starts at the last command. If you have a dask cluster then all computations can be distributed to the cluster.
Start a scheduler which organizes the computing tasks

$ dask-scheduler

• dask workers

$ dask-worker localhost:8786
$ dask-ssh host.domain
$ mpirun --np 4 dask-mpi
$ dask-ec2
$ dask-kubernetes
$ dask-drmaa
• Start a client

```python
>>> from dask.distributed import Client
>>> client = Client('localhost:8786')
```

now all dask operations will be distributed to the scheduler which distributes them to the cluster
• install qpython
• open pip console
• install dask
• install toolz
• install ipython
Dask dataframe limitations

Dask DataFrame has the following limitations:

- Setting a new index from an unsorted column is expensive.
- Many operations like groupby-apply and join on unsorted columns require setting the index, which as mentioned above, is expensive.
- The Pandas API is very large. Dask DataFrame does not attempt to implement many Pandas features or any of the more exotic data structures like NDFrames.
- Operations that were slow on Pandas, like iterating through row-by-row, remain slow on Dask DataFrame.
Dask DataFrame is used in situations where Pandas is commonly needed, usually when Pandas fails due to data size or computation speed:

- Manipulating large datasets, even when those datasets don’t fit in memory
- Accelerating long computations by using many cores
- Distributed computing on large datasets with standard Pandas operations like groupby, join, and time series computations
Dask DataFrame may not be the best choice in the following situations:

- If your dataset fits comfortably into RAM on your laptop, then you may be better off just using Pandas. There may be simpler ways to improve performance than through parallelism.

- If your dataset doesn’t fit neatly into the Pandas tabular model, then you might find more use in `dask.bag` or `dask.array`.

- If you need functions that are not implemented in Dask DataFrame, then you might want to look at `dask.delayed` which offers more flexibility.

- If you need a proper database with all that databases offer you might prefer something like Postgres.
Low level programming
Python numerical libraries
- superset of the Python programming language
- designed to give C-like performance
- code is mostly written in Python
- compiled language that generates CPython extension modules
- extension modules can then be loaded and used by regular Python code using the import statement
- Cython files have a .pyx extension
hello.pyx:
def say_hello():
    print "Hello World!"

launch.py:
import hello
hello.say_hello()
cython in ipython/jupyter notebooks

```python
In [1]: %load_ext Cython

In [2]: %cython
 ...: def f(n):
 ...: a = 0
 ...: for i in range(n):
 ...: a += i
 ...: return a
 ...
 ...
 ...

 ...: cpdef g(int n):
 ...: cdef int a = 0, i
 ...: for i in range(n):
 ...: a += i
 ...: return a
 ...
 ...

In [3]: %timeit f(1000000)
42.7 ms ± 783 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [4]: %timeit g(1000000)
74 µs ± 16.6 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
```
The End: XKCD

I learned it last night! Everything is so simple!

Hello world is just print "Hello, world!"

I dunno... Dynamic typing? Whitespace?

Come join us! Programming is fun again!

It's a whole new world up here!

But how are you flying?

I just typed import antigravity

That's it?

... I also sampled everything in the medicine cabinet for comparison.

But I think this is the Python.
Course Evaluation

Please visit https://survey.lrz.de/index.php/248382 and rate this course.

Your feedback is highly appreciated!
Thank you!