
C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

0

Recent Advances in Parallel Programming Languages:

OpenACC

LRZ München

Mandes Schönherr,

CRAY CoE @ HLRS, Suttgart

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

1

Agenda

● A quick GPU refresher
● Hardware and programing models

● OpenACC compared with OpenMP
● pragmas and OpenMP comparison

● OpenACC 2.x/3.0

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

2

A quick GPU refresher

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

3

How fast are current GPUs?

● What should you expect?
● On a typical hybrid system (e.g. Cray XC):

● Flop/s: GPU ~3x faster than a single CPU (using all 12 cores)
● Memory bandwidth: GPU ~3.5x faster than CPU

● These ratios are going to be similar in other systems
● But, it is harder to reach peak performance on a GPU

● Your code needs to fit the architecture
● You also need to factor in data transfers between CPU and GPU

CPU
~0.5 TF

GPU
~1.4-1.6 TF

128GB

DDR3
12 GB

GDDR5

PCIe-2

12 GB/s

~288 GB/s ~70 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

4

Nvidia K40 Kepler architecture (1)

● Global architecture
● a lot of lightweight compute cores

● 2880 SP plus 960 DP (ratio 3:1)

● divided into 15 Streaming Multiprocessors (SMX)

● SMXs operate independently of each other

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

5

● SMX architecture
● many cores (192 SP plus 64 DP)
● shared instruction stream

● lockstep, SIMT execution of same ops
● SMX acts like vector processor
● warps of 32 entries

● Memory hierarchy
● each core has private registers

● fixed register file size

● cores in an SMX share a fast L1 cache
● 64KB, split between:

● L1 cache and user-managed

● large global memory
● shared by all SMXs (cores)
● 12GB; also some specialist memory

Nvidia K40 Kepler architecture (2)

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

6

Memory model

● Current GPUs have a weak memory model
● host and device have separate memories

● different memory addresses, different data

● there is no automatic synchronisation of the memory spaces
● all synchronisation must be done explicitly by the host

● directed either by the user or by the runtime (the compiler may help)

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

7

Program execution with a GPU

● main program: host (CPU)
● Code on host either serially or in

parallel with threads (e.g.
OpenMP)
● calculations that you want to be

done on the CPU, e.g.
● it is hard to parallelise for the GPU
● there is not enough work to justify

using the GPU

● communication calls, e.g. MPI
● control statements for the GPU,

e.g.
● memory management and

data transfer on host and GPU
● launch “kernels” on GPU
● synchronisation

● kernels (tasks): device (GPU)
● launched from the host
● specially written for the GPUs,

e.g. with
● CUDA, OpenCL, Stream, hiCUDA,

…
● User need to rewrite kernels in quite

low-level special language
● Hard to write and debug
● Hard to optimise for specific GPU
● Hard to port to new accelerator

● OpenACC
● directive-based,
● Based on original source code

(easier to maintain/port/extend)

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

8

Kernels
● GPU kernels are executed by many threads in parallel

● all threads execute the same code
● perform the same operations, but on different data

● can take different paths in the code
● actually, they all take the same paths but some threads spin

● each thread has a unique ID
● this can be used to

● select which data elements to process
● make control decisions

● Each kernel thread will be executed by a core on the GPU

● Threads are grouped together
● threads are grouped into "blocks" (or "gangs")

● typically hundreds of threads per block
● the group of blocks is called a "grid"

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

9

Kernel execution: threadblocks

● each threadblock will execute on a single SMX
● you can have more threads than there are cores in an SMX
● you really want this to happen

● so the GPU has enough computational work

● different threadblocks will execute on different SMXs
● several threadblocks can be executing on the same SMX
● you really want this to happen

● threadblocks will be swapped in and out of execution to hide memory latency
● you have no control over this

● so you cannot predict which order threadblocks execute in
● nor is there any way to impose a full barrier within a kernel

● threads within a threadblock can interact
● they can communicate data via a fast shared memory
● you can synchronise within a threadblock

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

10

Kernel execution: warp

● Threadblocks are divided into sets of 32 threads (warp)
● SMX is really a vector processor of width 32
● groups of 32 cores act in lockstep, rather than independently
● shares a single instruction stream with single program counter

● Multiple warps in threadblock are executed in turn
● i.e. if there are more than 32 threads in the threadblock

● Memory loads/stores are also done on a per-warp basis
● Loading/storing 32 consecutive memory addresses at once

● So, really, the compiler is implementing your code using vector
instructions
● This is not explicit in the CUDA programming model, but is crucial to

gaining good performance from a GPU
● whichever programming model you are using (it's a hardware thing)

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

11

What does this mean for the programmer?
● You need a lot of parallel tasks (i.e. loop iterations) to keep GPU busy

● Each parallel task maps to a thread in a threadblock
● You need a lot of threadblocks per SMX to hide memory latency
● Not just 2880 parallel tasks, but 104 to 106 or more

● This is most-likely in a loop-based code, treating iterations as tasks

● OpenACC is particularly targeted at loop-based codes

● Your inner loop must vectorise (at least with vector length of 32)

● So we can use all 32 threads in a warp with shared instruction stream
● Branches in inner loop are allowed, but not too many

● Memory should be accessed in the correct order
● Global memory access is done with (sequential) vector loads
● For good performance, want as few of these as possible
● so all the threads in warp should collectively load a contiguous block of memory at the

same point in the instruction stream
● This is known as "coalesced memory access"
● So vectorised loop index should be fastest-moving index of each array

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

12

What does this mean for the programmer?

● No internal mechanism for synchronising between threadblocks
● Synchronisation must be handled by the host

● So reduction operations are more complicated

● even though all threadblocks share same global memory

● Fortunately launching kernels is cheap
● GPU threadteams are "lightweight"

● Data transfers between CPU and GPU are very expensive
● You need to concentrate on "data locality" and avoid "data sloshing"

● Keeping data in the right place for as long as it is needed is crucial

● You should port as much of the application as possible
● This probably means porting more than you expected

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

13

OpenACC model

● OpenACC is a specification for high-level compiler directives,
expressing parallelism for accelerators
● Directives are comments in the code

● automatically ignored by non-accelerating compiler

● OpenACC support in CCE and PGI

● on Cray machines
● load module, e.g. module load craype-accel-nvidia35
● Use compiler wrapper, ftn for Fortran, cc for C, and CC for C++

● OpenACC initiated by CRAY, CAPS, PGI, NVIDIA

● 1.0: Nov. 2011
● 2.0: Jun. 2013
● 2.5 and 3.0 in near future

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

14

First example

Matrix-vector multiplication

#pragma acc data copyin(a[0:n*m])
{
 ...
 #pragma acc data copyin(v[0:n]) \
 copyout(x[0:n])
 {
 ...
 matvecmul(x, a, v, m, n);
 ...
 }
 ...
}

void matvecmul(float* x, float* a,
 float* v, int m, int n){
#pragma acc parallel loop gang \
 pcopyin(a[0:n*m],v[0:n]) pcopyout(x[0:m])
 for(int i = 0; i < m; ++i){
 float xx = 0.0;

#pragma acc loop worker reduction(+:xx)
 for(int j = 0; j < n; ++j)
 xx += a[i*n+j]*v[j];
 x[i] = xx;
 }
}

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

15

OpenACC compared with OpenMP

pragma by pragma

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

16

OpenACC to OpenMP: Compute constructs

OpenACC OpenMP

!$acc kernel Compiler finds parallelism Not supported

!$acc parallel Offload work !$omp target teams

!$acc loop gang schedule threads within grid !$omp distribute

!$acc loop worker schedule threads within thread block Not supported

!$acc loop vector schedule threads within warp !$omp simd

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

17

OpenACC to OpenMP: Data regions

OpenACC OpenMP

!$acc data
create/pcreate

copyin/pcopyin

copy/pcopy

copyout/pcopyout

present

Manage data transfer
allocateting, deallocating, and copying

from and to the device
pcopy* is alias for present_or_copy*

!$omp target data
map(alloc:)

map(to:)

map(tofrom:)

map(from:)

Possible 4.1

!$acc update self

!$acc update device

data movement in data environment !$omp target update from

!$omp target update to

!$acc enter/exit data unstructured data lifetime !$omp enter/exit target

data (4.1)

!$acc host_data interoperability with CUDA/ libs Possible in 4.1

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

18

OpenACC to OpenMP: Separate compilation

OpenACC OpenMP

!$acc declare create declare global, static data !$omp declare target

!$acc declare
device_resident

Create device copy, but no
allocation on host

Not supported

!$acc declare link Link (pointer) on device to data
on host

Not supported

!$acc routine for function calls !$omp declare target

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

19

OpenACC to OpenMP: Other

OpenACC OpenMP

API routines OpenACC functionality provided
by function calls

Most supported in 4.1

!$acc atomic atomic operations Use regular OpenMP
atomics

!$acc cache advice to put objects to closer
memory

Not supported

!$acc … async(handle)
!$acc wait(handle)

asyncronous process,
waiting

- Tasks in 4.1
- depend/nowait on

target in 4.1

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

20

OpenACC to OpenMP: model approach

● OpenACC
● aims for portable performance

● Focus on directives for accelerators

● Descriptive approach to parallel programming

● OpenMP
● aims for programmability

● More general definition of pragmas

● Prescriptive approach to parallel programming

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

21

The OpenACC Runtime API

● Directives are comments in the code
● automatically ignored by non-accelerating compiler

● OpenACC also offers a runtime API
● set of library calls, names starting acc_

● set, get and control accelerator properties

● offer finer-grained control
● e.g. of asynchronicity acc_async_test_all()

● e.g. initialization/finalization

 acc_shutdown(), acc_init() … can prevent delay in initializing the GPU

● Data allocation and movement

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

22

Should I just wait for OpenMP4 support?

NO!
The knowlegde you gain, the analysis and restructuring you do is portable.

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

23

OpenACC 2.x/3.0

Deep Copy

Or

Type serialization

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

24

API / Directive Equivalence

● acc_init()

● acc_shutdown()

● acc_set_device_num()

● !$acc enter data copyin() async

● !$acc update device() async

● !$acc init(nvidia)

● !$acc shutdown

● !$acc set device(nvidia,num:1)

● acc_copyin_async()

● acc_update_device_async

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

25

Flat object model

struct {

 int x[2]; // size 2

} *A; // size 2

#pragma acc data copy(A[0:2])

● OpenACC supports a
“flat” object model
● Primitive types

● Composite types without
allocatable/pointer members

Host Memory: A[0].x[0] A[0].x[1] A[1].x[0] A[1].x[1]

dA[0].x[0] dA[0].x[1] dA[1].x[0] dA[1].x[1] Device Memory:

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

26

Challenges with pointer indirection

Host Memory: A[0].x A[1].x x[0] x[1] x[0] x[1]

struct {

 int *x; // size 2

} *A; // size 2

#pragma acc data copy(A[0:2])

● Non-contiguous transfers
● More simply moving data

hidden behind a pointer
● Fortran pointers have size

information built in
● C and C++ pointers …

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

27

Challenges with pointer indirection

Host Memory:

Device Memory: Shallow Copy
dA[0].x dA[1].x

A[0].x A[1].x x[0] x[1] x[0] x[1]

struct {

 int *x; // size 2

} *A; // size 2

#pragma acc data copy(A[0:2])

● Non-contiguous transfers
● More simply moving data

hidden behind a pointer
● Fortran pointers have size

information built in
● C and C++ pointers …

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

28

What is deep copy?

● Non-contiguous transfers
● More simply moving data

hidden behind a pointer
● Fortran pointers have size

information built in
● C and C++ pointers …

Host Memory:

Device Memory:

A[0].x A[1].x x[0] x[1] x[0] x[1]

dA[0].x dA[1].x x[0] x[1] x[0] x[1]

Deep Copy

struct {

 int *x; // size 2

} *A; // size 2

#pragma acc data copy(A[0:2])

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

29

Todays possible deep-copy solutions

● Re-write application
● Use “flat” objects

● Manual deep copy
● Issue multiple transfers

● Translate pointers

● Compiler-assisted deep copy
● Automatic for Fortran

● -hacc_model=deep_copy

● Dope vectors are self describing

● OpenACC extensions for C/C++
● Pointers require explicit shapes

Appropriate

for CUDA

Appropriate

for OpenACC

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

30

Manual deep-copy

● Currently works
for C/C++
● Fortran

programmers
have to know the
tricks

● not usually
practical

struct A_t {
 int n;
 int *x; // size n
};
...
struct A_t *A; // size 2

/* shallow copyin A[0:2] to device_A[0:2] */
struct A_t *dA = acc_copyin(A, 2*sizeof(struct A_t));
for (int i = 0 ; i < 2 ; i++) {
 /* shallow copyin A[i].x[0:A[i].n] to "orphaned" object */
 int *dx = acc_copyin(A[i].x, A[i].n*sizeof(int));
 /* fix acc pointer device_A[i].x */
 cray_acc_memcpy_to_device(&dA[i].x, &dx, sizeof(int*));
}

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

31

Proposed new directives

shape

● Self-describing Structures

● Inform the compiler of the shape
of the data behind the pointer

policy

● Data Policies

● Develop policies for how the data
should be relocated

*Syntax and functionality subject to change

struct A {
 int n;
 float* x;
#pragma acc delclare shape(x[0:n])
};

struct A {
 int n;
 float* x;
#pragma acc declare shape(x[0:n])
#pragma acc policy(“boundary”) \
 update(x[0:1],x[n-1:1])
};

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

32

Proposed “shape” directives

type Foo

 real,allocatable :: x(:)

 real,pointer :: y(:)

 !$acc declare shape(x) ! deep copy x

 !$acc declare unshape(y) ! do not deep

copy y

end type Foo

struct A_t {

 int n;

 int *x; // size n

#pragma acc declare shape(x[0:n])

};

...

struct A_t *A; // size 2

...

/* deep copy */

#pragma acc data copy(A[0:2])

● Each object must shape its own pointers
● Member pointers must be contiguous
● No polymorphic types (types must be known statically)
● Pointer association may not change on accelerator (including

allocation/deallocation)
● Member pointers may not alias (no cyclic data structures)
● Assignment operators, copy constructors, constructors or destructors are not

invoked

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

33

!$acc exit data

C O M P U T E | S T O R E | A N A L Y Z E

Recent Advances in Parallel Programming Languages 8-June-2015

34

Sources of further information
● Standards web pages:

● OpenACC.org
● documents: full standard and quick reference guide PDFs
● links to other documents, tutorials etc.

● Discussion lists:
● Cray users: openacc-users@cray.com

● automatic subscription if you have a swan (or raven) account
● Fora: openacc.org/forum

● CCE man pages (with PrgEnv-cray loaded):
● programming model and Cray extensions: intro_openacc
● examples of use: openacc.examples
● also compiler-specific man pages: crayftn, craycc, crayCC

● CrayPAT man pages (with perftools loaded):
● intro_craypat, pat_build, pat_report

● also command: pat_help
● accpc (for accelerator performance counters)

http://www.openacc.org/
mailto:openacc-users@cray.com
mailto:openacc-users@cray.com
mailto:openacc-users@cray.com
http://openacc.org/forum

