Recent Advances in Parallel Programming Languages:

OpenACC

LRZ Minchen

Mandes Schonherr,
CRAY CoE @ HLRS, Suttgart

8-June-2015

COMPUTE | STORE | ANALYZE 0
Recent Advances in Parallel Programming Languages ‘

Agenda

e A quick GPU refresher
e Hardware and programing models

e OpenACC compared with OpenMP
e pragmas and OpenMP comparison

e OpenACC 2.x/3.0

COMPUTE | STORE |

ANALYZE

8-June-2015 Recent Advances in Parallel Programming Languages

\
C R Ay |
[\

A quick GPU refresher

How fast are current GPUS? <

e What should you expect?
e On a typical hybrid system (e.g. Cray XC):
e Flop/s: GPU ~3x faster than a single CPU (using all 12 cores)
e Memory bandwidth: GPU ~3.5x faster than CPU
e These ratios are going to be similar in other systems
e But, it is harder to reach peak performance on a GPU
e Your code needs to fit the architecture
e You also need to factor in data transfers between CPU and GPU

128GB

il A, | b= C::‘I- [2) [()355]

£ ~70 GB/s ~288 GB/s

PCle-2
. 12 GB/s

Nvidia K40 Kepler architecture (1)

e Global architecture

e a lot of lightweight compute cores
e 2880 SP plus 960 DP (ratio 3:1)

e divided into 15 Streaming Multiprocessors (SMX)

e SMXs operate independently of each other

] n n]] n n n] n n n] n n n] n n n] n n n] [l n] 3
ENENEEEA AN R RN EERAE R RN EERAEE R RN EERAEE R RN EERAEE R RN EERAEE ENERINEA AN <
SNEREREA AN SR ANEEERERAEE mEEEEEEEREEEE mEEEEEEEREEEE mEEEEEEEREEEE mEEEEEEEREEEE EEEEEEE R R g
ENENENEA AN N AN RENAEE N AN RENAEE N AN RENAEE N AN RENAEE N AN RENAEE ENERINEAEENEE S
ANANENEAEEE AN SR AN NERENAEE mEEEEEEEREEEE mEEEEEEEREEEE mEEEEEEEREEEE mEEEEEEEREEEE ENEEIEEE R RN g
ANARNREA AN SR RN NERARAEE SR RRNEERRAEE SR RRNEERRAEE SR RRNEERRAEE SR RRNEERRAEE ANARINEA AN H

llllllllllllllllllllllllllll

llllllllllllllllllllllllllllllll

Nvidia K40 Kepler architecture (2)

e SMX architecture
e Mmany cores (192 SP plus 64 DP)
e shared instruction stream

e lockstep, SIMT execution of same|ops
e SMX acts like vector processor
e warps of 32 entries

e Memory hierarchy

e each core has private registers
e fixed register file size

e coresin an SMX share a fast L1 cache
e 64KB, split between:

e L1 cache and user-managed

e large global memory
e shared by all SMXs (cores)
e 12GB; also some specialist memory

—+ KB Shared Memory / L1 Cache
48 KB Read-Only Data Cache

Memory model

e Current GPUs have a weak memory model
e host and device have separate memories
e different memory addresses, different data
e there is no automatic synchronisation of the memory spaces
e all synchronisation must be done explicitly by the host
e directed either by the user or by the runtime (the compiler may help)

SMX 0 SMX 13
Registers . Registers
Shared L1 Read only Shared L1 Read only

DRAM(Global Memory)

COMPUTE | STORE | ANALYZE 6
8-June-2015 Recent Advances in Parallel Programming Languages

Program execution with a GPU <

e main program: host (CPU) e kernels (tasks): device (GPU)
e Code on host either serially or in e launched from the host

parallel with threads (e.g. e specially written for the GPUs,
OpenMP) e.g. with
e calculations that you want to be e CUDA, OpenCL, Stream, hiCUDA
done on the CPU, e.g. ’ ’ ’ ’
e itis hard to parallelise for the GPU e User need to rewrite kernels in quite
e there is not enough work to justify low-level special language
using the GPU e Hard to write and debug
e communication calls, e.g. MPI e Hard to optimise for specific GPU
e control statements for the GPU, e Hard to port to new accelerator
e.g.
e memory management and e OpenACC

data transfer on host and GPU : .
e directive-based,

‘ Iaun%h k.e”‘?'s on GPU e Based on original source code
e synchronisation (easier to maintain/port/extend)

COMPUTE | STORE | ANALYZE
8-June-2015 Recent Advances in Parallel Programming Languages

Kernels <

e GPU kernels are executed by many threads in parallel
e all threads execute the same code \
e perform the same operations, but on different data
e can take different paths in the code
e actually, they all take the same paths but some threads spin

e each thread has a unique ID

e this can be used to
e select which data elements to process
e make control decisions

e Each kernel thread will be executed by a core on the GPU

e Threads are grouped together
e threads are grouped into "blocks" (or "gangs")
e typically hundreds of threads per block
e the group of blocks is called a "grid"

COMPUTE | STORE | ANALYZE 8
8-June-2015 Recent Advances in Parallel Programming Languages :

Kernel execution: threadblocks <

e each threadblock will execute on a single SMX
e Yyou can have more threads than there are cores in an SMX 3
e Yyou really want this to happen
e so the GPU has enough computational work

e different threadblocks will execute on different SMXs
e several threadblocks can be executing on the same SMX
e Yyou really want this to happen
e threadblocks will be swapped in and out of execution to hide memory latency
e Yyou have no control over this
e SO you cannot predict which order threadblocks execute in
e nor is there any way to impose a full barrier within a kernel

e threads within a threadblock can interact
e they can communicate data via a fast shared memory
e Yyou can synchronise within a threadblock

COMPUTE | STORE | ANALYZE 9
8-June-2015 Recent Advances in Parallel Programming Languages ‘

Kernel execution: warp SRS

e \
\

e Threadblocks are divided into sets of 32 threads (warp)
e SMX is really a vector processor of width 32 .
e groups of 32 cores act in lockstep, rather than independently
e shares a single instruction stream with single program counter

e Multiple warps in threadblock are executed in turn
e i.e. if there are more than 32 threads in the threadblock

e Memory loads/stores are also done on a per-warp basis
e Loading/storing 32 consecutive memory addresses at once

e So, really, the compiler is implementing your code using vector
Instructions
e This is not explicit in the CUDA programming model, but is crucial to
gaining good performance from a GPU
e Whichever programming model you are using (it's a hardware thing)

COMPUTE | STORE | ANALYZE (10)
8-June-2015 Recent Advances in Parallel Programming Languages ‘

L)
C R

What does this mean for the programmer? ST

e \
e You need a lot of parallel tasks (i.e. loop iterations) to keep GPU busy)
Each parallel task maps to a thread in a threadblock
e You need a lot of threadblocks per SMX to hide memory latency \
Not just 2880 parallel tasks, but 10* to 10° or more

\
BV

This is most-likely in a loop-based code, treating iterations as tasks
e OpenACC is particularly targeted at loop-based codes

e Your inner loop must vectorise (at least with vector length of 32)
e S0 we can use all 32 threads in a warp with shared instruction stream
e Branches in inner loop are allowed, but not too many

e Memory should be accessed in the correct order
e Global memory access is done with (sequential) vector loads
e For good performance, want as few of these as possible

e so all the threads in warp _should collectively load a contiguous block of memory at the
same point in the instruction stream

e This is known as "coalesced memory access"
e So vectorised loop index should be fastest-moving index of each array

COMPUTE | STORE | ANALYZE 1
8-June-2015 Recent Advances in Parallel Programming Languages g

L)
C R

What does this mean for the programmer? s

\
BV

e No internal mechanism for synchronising between threadblocks

e Synchronisation must be handled by the host i
e So reduction operations are more complicated
e even though all threadblocks share same global memory

e Fortunately launching kernels is cheap
e GPU threadteams are "lightweight"

e Data transfers between CPU and GPU are very expensive
e You need to concentrate on "data locality" and avoid "data sloshing"
e Keeping data in the right place for as long as it is needed is crucial

e You should port as much of the application as possible
e This probably means porting more than you expected

COMPUTE | STORE | ANALYZE (12)
8-June-2015 Recent Advances in Parallel Programming Languages

OpenACC model S SR

e OpenACC is a specification for high-level compiler directives,
expressing parallelism for accelerators

e Directives are comments in the code
e automatically ignored by non-accelerating compiler

e OpenACC support in CCE and PGl
e on Cray machines
e |load module, e.g. module load craype-accel-nvidia35
e Use compiler wrapper, ftn for Fortran, cc for C, and CC for C++

enACC initiated by CRAY, CAPS, PGI, NVIDIA
1.0: Nov. 2011

2.0: Jun. 2013
2.

® Op
[)
o
e 2.5 and 3.0 in near future

COMPUTE | STORE | ANALYZE
8-June-2015 Recent Advances in Parallel Programming Languages

/13 \

First example

Matrix-vector multiplication

#pragma acc data copyin(a[@:n*m])

{

#pragma acc data copyin(v[@:n]) \
copyout(x[@:n])
{

matvecmul(x, a, v, m, n);

y

void matvecmul(float* x, float* a,
float* v, int m, int n){
#pragma acc parallel loop gang \
pcopyin(a[@:n*m],v[@:n]) pcopyout(x[0:m])
for(int i = 0; i < m; ++i){
float xx = 0.0;

#pragma acc loop worker reduction(+:xx)
for(int j =0; j < n; ++j)
XX += a[i*n+j]*v[j];
x[i] = xx;

}

}

4

\
CRRAYy |
[\

OpenACC compared with OpenMP

pragma by pragma

g
OpenACC to OpenMP: Compute constructs S
OpenACC OpenMP Y
1$acc kernel Compiler finds parallelism Not supported

I$acc parallel Offload work I$omp target teams
I$acc loop gang schedule threads within grid I$omp distribute

I$acc loop worker schedule threads within thread block Not supported

1$acc

loop vector

schedule threads within warp I$omp simd

] -] — P
OpenACC to OpenMP: Data regions ST
e \
\
OpenACC OpenMP Y
I$acc data Manage data transfer l$omp target data
create/pcreate allocateting, deallocating, and copying map(alloc:)
copyin/pcopyin from and to the device map(to:)
copy/pcopy pcopy* is alias for present_or_copy* map(tofrom:)
copyout/pcopyout map(from:)
present Possible 4.1

I$acc update self
I$acc update device

I$acc enter/exit data

I$acc host_data

data movement in data environment

unstructured data lifetime

interoperability with CUDA/ libs

ISomp target update from
ISomp target update to

ISomp enter/exit target
data (4.1)

Possible in 4.1

\
- : —=Ray ||

OpenACC to OpenMP: Separate compilation R
OpenACC OpenMP

I$acc declare create declare global, static data I$omp declare target
1$acc declare Create device copy, but no Not supported
device_resident allocation on host

1$acc declare link Link (pointer) on device to data Not supported

on host

I$acc routine for function calls I$omp declare target

OpenACC to OpenMP: Other

OpenACC

OpenMP

API routines
I$acc atomic

I$acc cache

I$acc .. async(handle)
1$acc wait(handle)

OpenACC functionality provided
by function calls

atomic operations

advice to put objects to closer
memory

asyncronous process,
waiting

Most supported in 4.1

Use regular OpenMP
atomics

Not supported

- Tasksin 4.1
- depend/nowait on
target in4.1

OpenACC to OpenMP: model approach

e OpenACC
e aims for portable performance
e Focus on directives for accelerators
e Descriptive approach to parallel programming

e OpenMP
e aims for programmability
e More general definition of pragmas
e Prescriptive approach to parallel programming

COMPUTE | STORE | ANALYZE
8-June-2015 Recent Advances in Parallel Programming Languages

20

The OpenACC Runtime API RS S

e Directives are comments in the code
e automatically ignored by non-accelerating compiler

e OpenACC also offers a runtime API

e set of library calls, names starting acc_
e set, get and control accelerator properties
e Offer finer-grained control
e e.g. of asynchronicity acc_async_test_all()
e e.g. initialization/finalization
acc_shutdown(), acc_init() ... can prevent delay in initializing the GPU
e Data allocation and movement

COMPUTE | STORE | ANALYZE
8-June-2015 Recent Advances in Parallel Programming Languages

21

Should I just wait for OpenMP4 support? <

NO!

The knowlegde you gain, the analysis and restructuring you do is portable.

8-June-2015

==AY\°, '
OpenACC 2.x/3.0
Deep Copy
Or
Type serialization
COMPUTE | STORE | ANALYZE 23

Recent Advances in Parallel Programming Languages

API / Directive Equivalence

acc_init()
acc_shutdown()

acc_set _device _num()
I$acc enter data copyin() async

I$acc update device() async

I$acc init(nvidia)
I$acc shutdown

I$acc set device(nvidia,num:1)
acc_copyin_async()

acc_update_device_async

Flat object model =SS
e OpenACC supports a Stract |
“flat” object model int x[2]; // size 2
e Primitive types } *A; // size 2
e Composite types without #pragma acc data copy(A[0:2])
allocatable/pointer members 7
Host Memory: A[0].x[0] | A[O].x[1] | A[1].x[O0] | A[1].x[1]

Device Memory | dA[O0] .x[0] | dA[O0] .x[1] | dA[1] .x[0] | AA[1].x[1]

Challenges with pointer indirection <

e Non-contiguous transfers

e More simply moving data | Struct { .
hidden behind apo?nter i g) ElEE
e Fortran pointers have size b *A; // size 2
information built in #pragma acc data copy(A[0:2])
e C and C++ pointers ... 74
— — — —
Host Memory: x[0] | x[1] A[O0] .x | A[1].x x[0] | x[1]
COMPUTE | STORE | ANALYZE (o6)

8-June-2015 Recent Advances in Parallel Programming Languages

Challenges with pointer indirection <

e Non-contiguous transfers

: : truct {
e More simply moving data |5% . |
hidden behind a pointer e SR Y GRS =
e Fortran pointers have size b O*R; Vi mhE 2
information built in #pragma acc data copy (A[0:2])
e C and C++ pointers ... 7

HostMemory:‘ x[0] | x[1] ‘ A[O0].x | A[1] .x x[0]

. P
Device Memory: dA[0] .x|dA[1] .x

5

ﬁ

Shallow Copy

What is deep copy? <

e Non-contiguous transfers

° - : struct {

ore SRy movng data | “TEELL /) e 2

e Fortran pointers have size I // size 2

information built in #ipragma acc data copy(A[0:2])
e C and C++ pointers ... 7
) P—) —

Host Memory: x[0] | x[1] A[O0].x | A[1] .x x[0] | x[1]
Device Memory:[x[0] | x[1] dA[O0] .x|dA[1l] .x x[0] | x[1]]

Z \
Deep Copy ? k_/ _/

Todays possible deep-copy solutions R
e Re-write application —

e Use “flat” objects
e Manual deep copy _ Appropriate

e Issue multiple transfers for CUDA

e Translate pointers

e Compiler-assisted deep copy

e Automatic for Fortran

e -hacc_model=deep_copy :
e Dope vectors are self describing T Ap p ro p riate

e OpenACC extensions for C/C++ for OpenACC
e Pointers require explicit shapes _

J\

COMPUTE | STORE | ANALYZE 29
8-June-2015 Recent Advances in Parallel Programming Languages

Manual deep-copy

struct A_t {
int n;
int *x; // size n
}s
struct A_t *A; // size 2
/* shallow copyin A[@:2] to device_A[0:2] */

for (int i =0 ; 1 < 2 ; i++) {

int *dx = acc_copyin(A[i].x, A[i].n*sizeof(int));
/* fix acc pointer device_A[i].x */

}

struct A_t *dA = acc_copyin(A, 2*sizeof(struct A_t));

/* shallow copyin A[i].x[0:A[i].n] to "orphaned" object */

cray_acc_memcpy_to_device(&dA[i].x, &dx, sizeof(int*));

4

e Currently works

for C/C++
e Fortran
programmers
have to know the
tricks
e not usually
practical

Proposed new directives

shape
e Self-describing Structures

e Inform the compiler of the shape

of the data behind the pointer

policy
e Data Policies

e Develop policies for how the data
should be relocated

struct A {
int n;
float* x;

Iy

#pragma acc delclare shape(x[0:n])

4

struct A {
int n;
float* x;
#pragma acc declare shape(x[0:n])
#pragma acc policy(“boundary”) \
update(x[0:1],x[n-1:1])

}s5 7

*Syntax and functionality subject to change

COMPUTE |
8-June-2015

STORE |
Recent Advances in Parallel Programming Languages

ANALYZE

Proposed “shape” directives

struct A t {
int n;
int *x;

hy

struct A t *A;

/* deep copy */

// size n

#pragma acc declare shape(x[0:n])

// size 2

#pragma acc data copy(A[0:2]) 7

type Foo

real,allocatable ::
2roy(:)

real ,pointer

x(:)

1Sacc declare shape (x)
!Sacc declare unshape (y)

COopY Y
end type Foo

! deep copy x
! do not deep

4

allocation/deallocation)
Member pointers may not alias (no cyclic data structures)
Assignment operators, copy constructors, constructors or destructors are not

invoked

Each object must shape its own pointers

Member pointers must be contiguous

No polymorphic types (types must be known statically)
Pointer association may not change on accelerator (including

l$acc exit data

COMPUTE | STORE | ANALYZE
8-June-2015 Recent Advances in Parallel Programming Languages

33

Sources of further information

e Standards web pages:
e OpenACC.org

e documents: full standard and quick reference guide PDFs

o links to othe_r documents, tutorials etc.
e Discussion lists:
e Cray users: openacc-users@cray.com

e automatic subscription if you have a swan (or raven) account

e Fora: openacc.org/forum

e CCE man pages (with PrgEnv-cray loaded):
e programming model and Cray extensions: intro_openacc
e examples of use: openacc.examples

e also compiler-specific man pages: crayftn, craycc, crayCC

e CrayPAT man pages (with perftools loaded):
e intro_craypat, pat_build, pat_report

e also command: pat_help

e accpc (for accelerator performance counters)

8-June-2015

COMPUTE | STORE | ANALYZE
Recent Advances in Parallel Programming Languages

© 34)

http://www.openacc.org/
mailto:openacc-users@cray.com
mailto:openacc-users@cray.com
mailto:openacc-users@cray.com
http://openacc.org/forum

